当前位置: 首页 > article >正文

设计模式 21 策略模式

设计模式 21

  • 创建型模式(5):工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式
  • 结构型模式(7):适配器模式、桥接模式、组合模式、装饰者模式、外观模式、享元模式、代理模式
  • 行为型模式(11):责任链模式、命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板方法模式、访问者模式

文章目录

  • 设计模式 21
    • 策略模式(Strategy Pattern)
      • 1 定义
      • 2 结构
      • 3 示例代码
      • 4 特点
      • 5 适用场景
      • 6 总结

策略模式(Strategy Pattern)

1 定义

策略模式的核心思想是将不同的算法或行为封装到独立的策略类中,并通过上下文类来管理和使用这些策略。客户端可以通过上下文类来动态选择使用哪种策略,而无需关心策略的具体实现细节。

2 结构

策略模式包含以下角色:

  • 上下文(Context): 维护一个策略对象的引用,供客户端使用。上下文不实现算法,而是将算法的实现委托给策略对象。
  • 策略接口(Strategy): 定义一组算法的通用接口,所有具体策略类都实现这个接口。
  • 具体策略(ConcreteStrategy): 实现策略接口,定义具体的算法或行为。

UML 类图

+---------------------------+       +-----------------------+
|      Context              |       |      Strategy         |
+---------------------------+       +-----------------------+
| - strategy: Strategy      |       | + Algorithm(): void   |
| + SetStrategy(Strategy)   |       +-----------------------+
| + ExecuteStrategy(): void |           ^              ^
+---------------------------+           |              |
                                        |              |
                                        |              |
                   +-----------------------+        +-----------------------+
                   | ConcreteStrategyA     |        | ConcreteStrategyB     |
                   +-----------------------+        +-----------------------+
                   | + Algorithm(): void   |        | + Algorithm(): void   |
                   +-----------------------+        +-----------------------+

3 示例代码

假设我们要实现一个简单的支付系统,它支持多种支付方式,如信用卡支付、PayPal支付和比特币支付。我们可以使用策略模式来封装这些支付方式,并让客户端在运行时选择不同的支付策略。

策略接口

// 策略接口
public interface IPaymentStrategy
{
    void Pay(double amount);
}

具体策略类

// 具体策略 - 信用卡支付
public class CreditCardPayment : IPaymentStrategy
{
    private string _cardNumber;

    public CreditCardPayment(string cardNumber)
    {
        _cardNumber = cardNumber;
    }

    public void Pay(double amount)
    {
        Console.WriteLine($"Paid {amount} using Credit Card {_cardNumber}.");
    }
}

// 具体策略 - PayPal支付
public class PayPalPayment : IPaymentStrategy
{
    private string _email;

    public PayPalPayment(string email)
    {
        _email = email;
    }

    public void Pay(double amount)
    {
        Console.WriteLine($"Paid {amount} using PayPal account {_email}.");
    }
}

// 具体策略 - 比特币支付
public class BitcoinPayment : IPaymentStrategy
{
    private string _walletAddress;

    public BitcoinPayment(string walletAddress)
    {
        _walletAddress = walletAddress;
    }

    public void Pay(double amount)
    {
        Console.WriteLine($"Paid {amount} using Bitcoin wallet {_walletAddress}.");
    }
}

上下文类

// 上下文类
public class PaymentContext
{
    private IPaymentStrategy _paymentStrategy;

    public void SetPaymentStrategy(IPaymentStrategy paymentStrategy)
    {
        _paymentStrategy = paymentStrategy;
    }

    public void Pay(double amount)
    {
        _paymentStrategy.Pay(amount);
    }
}

客户端代码

class Program
{
    static void Main(string[] args)
    {
        PaymentContext context = new PaymentContext();

        // 使用信用卡支付
        context.SetPaymentStrategy(new CreditCardPayment("1234-5678-9012-3456"));
        context.Pay(100.0);

        // 使用PayPal支付
        context.SetPaymentStrategy(new PayPalPayment("user@example.com"));
        context.Pay(200.0);

        // 使用比特币支付
        context.SetPaymentStrategy(new BitcoinPayment("1BitcoinAddressXYZ"));
        context.Pay(300.0);
    }
}

运行结果

Paid 100 using Credit Card 1234-5678-9012-3456.
Paid 200 using PayPal account user@example.com.
Paid 300 using Bitcoin wallet 1BitcoinAddressXYZ.

在这个例子中,PaymentContext 是上下文类,它持有一个 IPaymentStrategy 策略接口的引用。客户端可以动态设置不同的支付策略,如 CreditCardPaymentPayPalPaymentBitcoinPayment,并通过 Pay() 方法执行支付操作。这样,支付方式的变化不会影响客户端代码。

4 特点

  • 优点:

    • 算法的灵活性: 策略模式允许在运行时选择不同的算法或行为,增加了系统的灵活性和扩展性。

    • 避免使用条件语句: 通过将不同的算法封装在独立的策略类中,避免了在客户端代码中使用大量的条件分支语句。

    • 遵循开放-封闭原则: 可以在不修改现有代码的情况下,通过添加新的策略类来扩展系统的功能。

  • 缺点:

    • 增加类的数量: 每个策略都需要一个具体的策略类,可能会导致类的数量增加,增加系统的复杂性。

    • 策略选择的复杂性: 在一些情况下,策略的选择逻辑可能本身就比较复杂,如何选择合适的策略可能会成为一个挑战。

5 适用场景

  • 多种算法需要互换: 当一个系统有多个相似的算法或行为,并且这些算法或行为需要在不同情况下互换使用时,策略模式非常适用。
  • 消除条件分支语句: 如果代码中存在大量的条件分支语句来选择不同的算法或行为,策略模式可以通过将这些算法封装到独立的策略类中来简化代码。
  • 算法的频繁变化: 当算法或行为经常发生变化时,可以使用策略模式,使得每种算法封装在独立的策略类中,便于维护和扩展。

6 总结

策略模式通过将不同的算法封装到独立的策略类中,实现了算法的灵活互换。它消除了大量的条件分支语句,使代码更加清晰和可扩展。尽管策略模式可能会增加类的数量,但它为系统的算法选择和扩展提供了一种灵活且强大的解决方案。在需要灵活选择算法或行为的场景中,策略模式是一种非常有效的设计模式。


http://www.kler.cn/a/298622.html

相关文章:

  • iOS - 自定义引用计数(MRC)
  • 小R的蛋糕分享
  • 【论文复现】改进麻雀搜索算法优化冷水机组的最优负载调配问题
  • 数学建模入门——描述性统计分析
  • 使用 Optimum Habana 在 Intel Gaudi 上加速模型训练与推理
  • 用公网服务代理到本地电脑笔记
  • Android 存储之 SharedPreferences 框架体系编码模板
  • 如何在 PyCharm 中导入上级目录(或称为父目录)的模块或包
  • 停车场小程序如何实现分账功能?
  • Unity 摄像机(Camera)详解
  • 牛客小白月赛100(下)
  • 计算机知识科普问答--6 (26-30)
  • 使用lspci命令获取加速卡型号
  • 【编程底层思考】导致Spring事务失效的场景示例与原因分析,以及如何避免事务失效
  • SpringCloud nacos
  • 【Kubernetes知识点问答题】资源配额 / 访问控制
  • 服务器重装系统,数据备份 容器备份
  • vue页面使用自定义字体
  • Mysql基础练习题 1527.患某种疾病的患者 (力扣)
  • Vue组件:混入
  • C语言文件操作全攻略:从打开fopen到读写r,w,一网打尽
  • Redis基本类型常用命令练习
  • [CTF夺旗赛] CTFshow Web1-12 详细过程保姆级教程~
  • uniapp微信小程序开发踩坑日记:Pinia持久化报错Cannot read property ‘localStorage‘ of undefined
  • Spark MLlib模型训练—文本算法 LDA(Latent Dirichlet Allocation)
  • DNS解析与网络通信中的套接字与协议栈工作机制详解