当前位置: 首页 > article >正文

【CanMV K230 AI视觉】 人体检测

【CanMV K230 AI视觉】 人体检测

  • 人体检测

动态测试效果可以去下面网站自己看。

B站视频链接:已做成合集
抖音链接:已做成合集


人体检测

人体检测是判断摄像头画面中有无出现人体,常用于人体数量检测,人流量监控以及安防监控等。

在这里插入图片描述

'''
实验名称:人体检测
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
'''


from libs.PipeLine import PipeLine, ScopedTiming
from libs.AIBase import AIBase
from libs.AI2D import Ai2d
import os
import ujson
from media.media import *
from time import *
import nncase_runtime as nn
import ulab.numpy as np
import time
import utime
import image
import random
import gc
import sys
import aicube

# 自定义人体检测类
class PersonDetectionApp(AIBase):
    def __init__(self,kmodel_path,model_input_size,labels,anchors,confidence_threshold=0.2,nms_threshold=0.5,nms_option=False,strides=[8,16,32],rgb888p_size=[224,224],display_size=[1920,1080],debug_mode=0):
        super().__init__(kmodel_path,model_input_size,rgb888p_size,debug_mode)
        self.kmodel_path=kmodel_path
        # 模型输入分辨率
        self.model_input_size=model_input_size
        # 标签
        self.labels=labels
        # 检测anchors设置
        self.anchors=anchors
        # 特征图降采样倍数
        self.strides=strides
        # 置信度阈值设置
        self.confidence_threshold=confidence_threshold
        # nms阈值设置
        self.nms_threshold=nms_threshold
        self.nms_option=nms_option
        # sensor给到AI的图像分辨率
        self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
        # 显示分辨率
        self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
        self.debug_mode=debug_mode
        # Ai2d实例,用于实现模型预处理
        self.ai2d=Ai2d(debug_mode)
        # 设置Ai2d的输入输出格式和类型
        self.ai2d.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)

    # 配置预处理操作,这里使用了pad和resize,Ai2d支持crop/shift/pad/resize/affine,具体代码请打开/sdcard/app/libs/AI2D.py查看
    def config_preprocess(self,input_image_size=None):
        with ScopedTiming("set preprocess config",self.debug_mode > 0):
            # 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,您可以通过设置input_image_size自行修改输入尺寸
            ai2d_input_size=input_image_size if input_image_size else self.rgb888p_size
            top,bottom,left,right=self.get_padding_param()
            self.ai2d.pad([0,0,0,0,top,bottom,left,right], 0, [0,0,0])
            self.ai2d.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
            self.ai2d.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])

    # 自定义当前任务的后处理
    def postprocess(self,results):
        with ScopedTiming("postprocess",self.debug_mode > 0):
            # 这里使用了aicube模型的后处理接口anchorbasedet_post_preocess
            dets = aicube.anchorbasedet_post_process(results[0], results[1], results[2], self.model_input_size, self.rgb888p_size, self.strides, len(self.labels), self.confidence_threshold, self.nms_threshold, self.anchors, self.nms_option)
            return dets

    # 绘制结果
    def draw_result(self,pl,dets):
        with ScopedTiming("display_draw",self.debug_mode >0):
            if dets:
                pl.osd_img.clear()
                for det_box in dets:
                    x1, y1, x2, y2 = det_box[2],det_box[3],det_box[4],det_box[5]
                    w = float(x2 - x1) * self.display_size[0] // self.rgb888p_size[0]
                    h = float(y2 - y1) * self.display_size[1] // self.rgb888p_size[1]
                    x1 = int(x1 * self.display_size[0] // self.rgb888p_size[0])
                    y1 = int(y1 * self.display_size[1] // self.rgb888p_size[1])
                    x2 = int(x2 * self.display_size[0] // self.rgb888p_size[0])
                    y2 = int(y2 * self.display_size[1] // self.rgb888p_size[1])
                    if (h<(0.1*self.display_size[0])):
                        continue
                    if (w<(0.25*self.display_size[0]) and ((x1<(0.03*self.display_size[0])) or (x2>(0.97*self.display_size[0])))):
                        continue
                    if (w<(0.15*self.display_size[0]) and ((x1<(0.01*self.display_size[0])) or (x2>(0.99*self.display_size[0])))):
                        continue
                    pl.osd_img.draw_rectangle(x1 , y1 , int(w) , int(h), color=(255, 0, 255, 0), thickness = 2)
                    pl.osd_img.draw_string_advanced( x1 , y1-50,32, " " + self.labels[det_box[0]] + " " + str(round(det_box[1],2)), color=(255,0, 255, 0))
            else:
                pl.osd_img.clear()

    # 计算padding参数
    def get_padding_param(self):
        dst_w = self.model_input_size[0]
        dst_h = self.model_input_size[1]
        input_width = self.rgb888p_size[0]
        input_high = self.rgb888p_size[1]
        ratio_w = dst_w / input_width
        ratio_h = dst_h / input_high
        if ratio_w < ratio_h:
            ratio = ratio_w
        else:
            ratio = ratio_h
        new_w = (int)(ratio * input_width)
        new_h = (int)(ratio * input_high)
        dw = (dst_w - new_w) / 2
        dh = (dst_h - new_h) / 2
        top = int(round(dh - 0.1))
        bottom = int(round(dh + 0.1))
        left = int(round(dw - 0.1))
        right = int(round(dw - 0.1))
        return  top, bottom, left, right

if __name__=="__main__":
    # 显示模式,默认"hdmi",可以选择"hdmi"和"lcd"
    display_mode="lcd"
    if display_mode=="hdmi":
        display_size=[1920,1080]
    else:
        display_size=[800,480]
    # 模型路径
    kmodel_path="/sdcard/app/tests/kmodel/person_detect_yolov5n.kmodel"
    # 其它参数设置
    confidence_threshold = 0.2
    nms_threshold = 0.6
    rgb888p_size=[1920,1080]
    labels = ["person"]
    anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]

    # 初始化PipeLine
    pl=PipeLine(rgb888p_size=rgb888p_size,display_size=display_size,display_mode=display_mode)
    pl.create()
    # 初始化自定义人体检测实例
    person_det=PersonDetectionApp(kmodel_path,model_input_size=[640,640],labels=labels,anchors=anchors,confidence_threshold=confidence_threshold,nms_threshold=nms_threshold,nms_option=False,strides=[8,16,32],rgb888p_size=rgb888p_size,display_size=display_size,debug_mode=0)
    person_det.config_preprocess()

    clock = time.clock()

    try:
        while True:

            os.exitpoint()

            clock.tick()

            img=pl.get_frame()  # 获取当前帧数据
            res=person_det.run(img)  # 推理当前帧
            person_det.draw_result(pl,res)  # 绘制结果到PipeLine的osd图像
            print(res) # 打印结果
            pl.show_image()  # 显示当前的绘制结果
            gc.collect()

            print(clock.fps()) #打印帧率

    #IDE中断注销相关对象,释放资源
    except Exception as e:
        sys.print_exception(e)
    finally:
        person_det.deinit()
        pl.destroy()
使用类说明
PersonDetectionApp人体检测

http://www.kler.cn/a/300201.html

相关文章:

  • 【STM32-学习笔记-11-】RTC实时时钟
  • Kafka-常见的问题解答
  • win32汇编环境,对多行编辑框添加或删除文本
  • 2023年江西省职业院校技能大赛网络系统管理赛项(Linux部分样题)
  • 淘宝关键词页面爬取绘图进行数据分析
  • SSE 实践:用 Vue 和 Spring Boot 实现实时数据传输
  • 使用ROS2 控制 Isaac Sim 中的机械臂运动
  • QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第三期]
  • Go-ecc加密解密详解与代码_ecdsa
  • mac安装spark
  • 算法知识点————双指针【删除重复元素】【反转链表】
  • Azure AI Search 中的二进制量化:优化存储和加快搜索速度
  • 简洁直白的github快速入门教程(云主机)
  • elementui Cascader 级联选择器的使用总结
  • 你真的懂吗系列——串口通信
  • uniapp ios sticky定位,内部 u-tabs(包含scroll-view)消失问题
  • 【QT】基础入门学习
  • 如何使用elementui实现一个根据页面进度实时增长/前进的进度条
  • DBA实战手记,技术书的黑神话
  • Codeforces Round 971 (Div. 4)——C题题解
  • 最直接显示 ubuntu 版本号的命令
  • 6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)
  • idea向git上推送被拒绝 push to master was rejected
  • 代码随想录27期|Python|Day52|​动态规划|​647. 回文子串|516. 最长回文子序列
  • react js 路由 Router
  • 类和对象(中)