当前位置: 首页 > article >正文

分布式集群下如何做到唯一序列号

优质博文:IT-BLOG-CN

分布式架构下,生成唯一序列号是设计系统常常会遇到的一个问题。例如,数据库使用分库分表的时候,当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。实现思路如下:

【1】数据库自增长序列或字段:全数据库唯一。
【优点】:简单,代码方便,性能可以接受。数字ID天然排序,对分页后者需要排序的结果很有帮组。适合小应用,无需分表,无高并发性能要求。
【缺点】:不同数据库实现不同,在水平分表时,使用自增ID时可能会出现ID冲突。同时在高并发的情况下需要使用事务。在性能达不到要求的情况下,比较难于扩展。如果多个系统需要合并或者设计到数据迁移会相当痛苦。
【优化】:针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1生成的是14710Master2生成的是2,5,8,11Master3生成的是3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

【2】UUID:常见的方式。可以利用数据库也可以利用程序生成32位的16进制格式的字符串,唯一性很高。
【优点】:简单,方便,生产ID性能非常好且全球基本唯一,在数据迁移和系统后期合并,或数据库变更等情况下都可应对。
【缺点】:没有排序,无法保证趋势递增。UUID使用字符串存储,查询效率低。存储空间较大,如果数据海量就绪考虑存储量问题,传输数据量大。

UUID是一种标准的128位标识符,几乎可以保证全局唯一。Java中可以使用java.util.UUID来生成:

import java.util.UUID;

public class UniqueIDGenerator {
    public static String generateUUID() {
        return UUID.randomUUID().toString();
    }
}

【3】Redis生成ID 当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作INCRINCRBY来实现。可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:
A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25
这个,随便负载到哪个机器确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以防止单点故障(系统中一点失效,就会让整个系统无法运作的部件)的问题。另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。
【优点】:不依赖于数据库,灵活方便,且性能优于数据库。数字ID天然排序,对分页或者需要排序的结果很有帮助。
【缺点】:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。需要编码和配置的工作量比较大。

使用Redis的原子操作,如INCR命令,可以生成全局唯一的序列号。Redis的高性能和分布式特性使其成为一个不错的选择

import redis.clients.jedis.Jedis;

public class RedisIdGenerator {
    private Jedis jedis;
    private String key;

    public RedisIdGenerator(String redisHost, int redisPort, String key) {
        this.jedis = new Jedis(redisHost, redisPort);
        this.key = key;
    }

    public long nextId() {
        return jedis.incr(key);
    }
}

【4】Twitter(推特) 的snowflake算法: twitter在把存储系统从MySQL迁移到Cassandra(一套开源分布式NoSQL数据库系统)的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake
 ● 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
 ● 10位的机器标识(10位的长度最多支持部署1024个节点)
 ● 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096ID序号) 最高位是符号位,始终为0

Snowflake的结构如下(每部分用-分开): 一共加起来刚好64位,为一个Long型。(转换成字符串后长度最多19)
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenterworkerId作区分),并且效率较高。经测试snowflake每秒能够产生26万个ID
【优点】:高性能,低延迟;独立的应用;按时间有序。
【缺点】:需要独立的开发和部署。在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。

Java实现的Snowflake算法示例:

public class SnowflakeIdGenerator {
    private final long twepoch = 1288834974657L;
    private final long workerIdBits = 5L;
    private final long datacenterIdBits = 5L;
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private final long sequenceBits = 12L;
    private final long workerIdShift = sequenceBits;
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long workerId;
    private long datacenterId;
    private long sequence = 0L;
    private long lastTimestamp = -1L;

    public SnowflakeIdGenerator(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    public synchronized long nextId() {
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }

        lastTimestamp = timestamp;

        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    protected long timeGen() {
        return System.currentTimeMillis();
    }
}

【5】MongoDBObjectId MongoDBObjectIdsnowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。

前4 个字节是从标准纪元开始的时间戳,单位为秒。时间戳,与随后的5个字节组合起来,提供了秒级别的唯一性。由于时间戳在前,这意味着ObjectId大致会按照插入的顺序排列。这对于某些方面很有用,如将其作为索引提高效率。这4个字节也隐含了文档创建的时间。绝大多数客户端类库都会公开一个方法从ObjectId获取这个信息。

接下来的3字节是所在主机的唯一标识符。通常是机器主机名的散列值。这样就可以确保不同主机生成不同的ObjectId,不产生冲突。

为了确保在同一台机器上并发的多个进程产生的ObjectId是唯一的,接下来的两字节来自产生ObjectId的进程标识符PID
9字节保证了同一秒钟不同机器不同进程产生的ObjectId是唯一的。后3字节就是一个自动增加的计数器,确保相同进程同一秒产生的ObjectId也是不一样的。同一秒钟最多允许每个进程拥有2563(16 777 216)个不同的ObjectId

【6】Zookeeper Zookeeper可以用来实现分布式唯一ID生成器。通过创建顺序节点,可以确保每个节点的名称是唯一且递增的。

【7】其他一些方案: 比如京东淘宝等电商的订单号生成。因为订单号和用户id在业务上的区别,订单号尽可能要多些冗余的业务信息,比如:滴滴:时间+起点编号+车牌号 淘宝订单:时间戳+用户ID 其他电商:时间戳+下单渠道+用户ID,有的会加上订单第一个商品的ID。而用户ID,则要求含义简单明了,包含注册渠道即可,尽量短。


http://www.kler.cn/a/300519.html

相关文章:

  • 华为HuaweiCloudStack(一)介绍与架构
  • 【Django开发】django美多商城项目完整开发4.0第12篇:商品部分,表结构【附代码文档】
  • HighCharts 交互式图表-01-入门介绍
  • 学技术学英文:通过jmeter命令行工具生成聚合报告文件到csv文件
  • java权限修饰符
  • PCL K4PCS算法实现点云粗配准【2025最新版】
  • rhel 8.6 开箱基本设置
  • Python3网络爬虫开发实战(14)资讯类页面智能解析
  • 【大数据算法】一文掌握大数据算法之:空间亚线性算法。
  • windows和linux安装mysql5.7.31保姆级教程
  • C/C++程序的内存开辟
  • MySQL数据库 — Explain命令
  • hadoop分布式搭建
  • 贪心算法day29|134. 加油站(理解有难度)、135. 分发糖果、860. 柠檬水找零、406. 根据身高重建队列
  • 最佳实践-模板设计模式
  • 横版闯关手游【全明星时空阿拉德】Linux手工服务端+运营后台+双app端
  • git:认识git和基本操作(1)
  • 手写Promise
  • 《实现 HTML 图片轮播效果》
  • <<编码>> 第 5 章 绕过拐弯的通信(Seeing Around Corners) 示例电路
  • 深入浅出 Ansible 自动化运维:从入门到实战
  • C++ Primer Plus(速记版)-基本语言
  • 网络安全入门教程(非常详细)从零基础入门到精通
  • 多线程:java中的实现
  • flink中slotSharingGroup() 的详解
  • MySQL索引优化与B+树【后端 14】