【Python爬虫】利用爬虫抓取双色球开奖号码,获取完整数据并通过随机森林和多层感知两种模型进行简单的预测
首先我们需要通过爬虫获取往期双色球号码并将其保存在csv文件中,这里我获取了1000期的数据,时间很久,大家可以修改代码少收集一些做尝试!
import requests
import os
from bs4 import BeautifulSoup
import csv
import time
def download(url, page):
while True:
try:
html = requests.get(url).text
soup = BeautifulSoup(html, 'html.parser')
list = soup.select('div.ball_box01 ul li')
ball = []
for li in list:
ball.append(li.string)
if not ball:
raise ValueError("Empty data")
write_to_excel(page, ball)
print(f"第{page}期开奖结果录入完成")
break
except Exception as e:
print(f"Attempt failed with error: {e}, retrying...")
time.sleep(5) # 等待5秒后重试
def write_to_excel(page, ball):
with open('双色球开奖结果2.csv', 'a', encoding='utf_8_sig', newline='') as f:
writer = csv.writer(f)
writer.writerow([f'第{page}期'] + ball)
def turn_page():
url = "https://kaijiang.500.com/ssq.shtml"
html = requests.get(url).text
soup = BeautifulSoup(html, 'html.parser')
pageList = soup.select("div.iSelectList a")
recent_pages = pageList[:1000] # 获取最近1000期的页码
for p in recent_pages:
url = p['href']
page = p.string
download(url, page)
def main():
if os.path.exists('双色球开奖结果2.csv'):
os.remove('双色球开奖结果2.csv')
turn_page()
if __name__ == '__main__':
main()
这里是随机森林预测
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
# 读取数据
data = pd.read_csv('双色球开奖结果2.csv') # ,encoding='gbk'
# 提取特征和标签
features = data.iloc[:, 1:7] # 红色球特征
labels = data.iloc[:, 1:7] # 红色球标签
blue_balls = data.iloc[:, 7] # 蓝色球标签
# 创建随机森林回归模型
model = RandomForestRegressor(n_estimators=100, random_state=1)
# 拟合模型
model.fit(features, labels)
# 预测下一期的红色球号码
next_red_balls = model.predict(features.iloc[-1].values.reshape(1, -1))
next_red_balls = np.round(next_red_balls).astype(int)
# 预测下一期的蓝色球号码
blue_ball_model = RandomForestRegressor(n_estimators=100, random_state=1)
blue_ball_model.fit(features, blue_balls)
next_blue_ball = blue_ball_model.predict(features.iloc[-1].values.reshape(1, -1))
next_blue_ball = np.round(next_blue_ball).astype(int)
# 打印预测的红色球号码和蓝色球号码
print("预测的红色球号码:", next_red_balls)
print("预测的蓝色球号码:", next_blue_ball)
多层感知
import pandas as pd
import numpy as np
from sklearn.neural_network import MLPRegressor
# 读取数据
data = pd.read_csv('双色球开奖结果2.csv') # , encoding='gbk'
# 提取特征和标签
features = data.iloc[:, 1:7] # 红色球特征
labels = data.iloc[:, 1:8] # 红色球标签和蓝色球标签
# 创建多层感知机回归模型
model = MLPRegressor(hidden_layer_sizes=(100,), random_state=1)
# 拟合模型
model.fit(features, labels)
# 预测下一期的红色球号码和蓝色球号码
next_features = model.predict(features.iloc[[-1]])
next_features = np.round(next_features).astype(int)
# 打印预测的红色球号码和蓝色球号码
print("预测的红色球号码:", next_features[:6])
print("预测的蓝色球号码:", next_features[6])
杰哥这里仅做了简单的预测,闲暇时间无聊做的,大家想要更精确的结果需要更精细的调参!