当前位置: 首页 > article >正文

爆改YOLOv8|使用MobileViTv1替换Backbone

1,本文介绍

MobileNetV1 是一种轻量级卷积神经网络,旨在提高计算效率。它的核心是深度可分离卷积,将传统卷积分解为深度卷积和逐点卷积,从而减少计算量和参数量。网络结构包括初始卷积层、多个深度可分离卷积层、全局平均池化层和全连接层。MobileNetV1 的设计使其在资源受限的设备上如移动设备上表现出色,适用于图像分类、目标检测等任务,平衡了模型大小与性能,广泛应用于需要高效处理的深度学习场景。

关于MobileViTv1的详细介绍可以看论文:https://arxiv.org/abs/2110.02178

本文将讲解如何将MobileViTv1融合进yolov8

话不多说,上代码!

2, 将MobileViTv1融合进yolov8

2.1 步骤一

首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个MobileNetV1.py文件,文件名字可以根据你自己的习惯起,然后将MobileNetV1的核心代码复制进去。


"""
original code from apple:
https://github.com/apple/ml-cvnets/blob/main/cvnets/models/classification/mobilevit.py
"""
import math
import numpy as np
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from typing import  Tuple,  Dict, Sequence
from typing import Union, Optional
 
__all__ = ['mobile_vit_small', 'mobile_vit_x_small', 'mobile_vit_xx_small']
def make_divisible(
        v: Union[float, int],
        divisor: Optional[int] = 8,
        min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
 
 
def bound_fn(
        min_val: Union[float, int], max_val: Union[float, int], value: Union[float, int]
) -> Union[float, int]:
    return max(min_val, min(max_val, value))
 
 
def get_config(mode: str = "xxs") -> dict:
    width_multiplier = 0.5
    ffn_multiplier = 2
    layer_0_dim = bound_fn(min_val=16, max_val=64, value=32 * width_multiplier)
    layer_0_dim = int(make_divisible(layer_0_dim, divisor=8, min_value=16))
    # print("layer_0_dim: ", layer_0_dim)
    if mode == "xx_small":
        mv2_exp_mult = 2
        config = {
            "layer1": {
                "out_channels": 16,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": 24,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 3,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": 48,
                "transformer_channels": 64,
                "ffn_dim": 128,
                "transformer_blocks": 2,
                "patch_h": 2,  # 8,
                "patch_w": 2,  # 8,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": 64,
                "transformer_channels": 80,
                "ffn_dim": 160,
                "transformer_blocks": 4,
                "patch_h": 2,  # 4,
                "patch_w": 2,  # 4,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": 80,
                "transformer_channels": 96,
                "ffn_dim": 192,
                "transformer_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
            "cls_dropout": 0.1
        }
    elif mode == "x_small":
        mv2_exp_mult = 4
        config = {
            "layer1": {
                "out_channels": 32,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": 48,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 3,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": 64,
                "transformer_channels": 96,
                "ffn_dim": 192,
                "transformer_blocks": 2,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": 80,
                "transformer_channels": 120,
                "ffn_dim": 240,
                "transformer_blocks": 4,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": 96,
                "transformer_channels": 144,
                "ffn_dim": 288,
                "transformer_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
            "cls_dropout": 0.1
        }
    elif mode == "small":
        mv2_exp_mult = 4
        config = {
            "layer1": {
                "out_channels": 32,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": 64,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 3,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": 96,
                "transformer_channels": 144,
                "ffn_dim": 288,
                "transformer_blocks": 2,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": 128,
                "transformer_channels": 192,
                "ffn_dim": 384,
                "transformer_blocks": 4,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": 160,
                "transformer_channels": 240,
                "ffn_dim": 480,
                "transformer_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
            "cls_dropout": 0.1
        }
    elif mode == "2xx_small":
        mv2_exp_mult = 2
        config = {
            "layer0": {
                "img_channels": 3,
                "out_channels": layer_0_dim,
            },
            "layer1": {
                "out_channels": int(make_divisible(64 * width_multiplier, divisor=16)),
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": int(make_divisible(128 * width_multiplier, divisor=8)),
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 2,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": int(make_divisible(256 * width_multiplier, divisor=8)),
                "attn_unit_dim": int(make_divisible(128 * width_multiplier, divisor=8)),
                "ffn_multiplier": ffn_multiplier,
                "attn_blocks": 2,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": int(make_divisible(384 * width_multiplier, divisor=8)),
                "attn_unit_dim": int(make_divisible(192 * width_multiplier, divisor=8)),
                "ffn_multiplier": ffn_multiplier,
                "attn_blocks": 4,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": int(make_divisible(512 * width_multiplier, divisor=8)),
                "attn_unit_dim": int(make_divisible(256 * width_multiplier, divisor=8)),
                "ffn_multiplier": ffn_multiplier,
                "attn_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
        }
    else:
        raise NotImplementedError
 
    for k in ["layer1", "layer2", "layer3", "layer4", "layer5"]:
        config[k].update({"dropout": 0.1, "ffn_dropout": 0.0, "attn_dropout": 0.0})
 
    return config
 
 
class ConvLayer(nn.Module):
    """
    Applies a 2D convolution over an input
    Args:
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H_{in}, W_{in})`
        out_channels (int): :math:`C_{out}` from an expected output of size :math:`(N, C_{out}, H_{out}, W_{out})`
        kernel_size (Union[int, Tuple[int, int]]): Kernel size for convolution.
        stride (Union[int, Tuple[int, int]]): Stride for convolution. Default: 1
        groups (Optional[int]): Number of groups in convolution. Default: 1
        bias (Optional[bool]): Use bias. Default: ``False``
        use_norm (Optional[bool]): Use normalization layer after convolution. Default: ``True``
        use_act (Optional[bool]): Use activation layer after convolution (or convolution and normalization).
                                Default: ``True``
    Shape:
        - Input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - Output: :math:`(N, C_{out}, H_{out}, W_{out})`
    .. note::
        For depth-wise convolution, `groups=C_{in}=C_{out}`.
    """
 
    def __init__(
            self,
            in_channels: int,  # 输入通道数
            out_channels: int,  # 输出通道数
            kernel_size: Union[int, Tuple[int, int]],  # 卷积核大小
            stride: Optional[Union[int, Tuple[int, int]]] = 1,  # 步长
            groups: Optional[int] = 1,  # 分组卷积
            bias: Optional[bool] = False,  # 是否使用偏置
            use_norm: Optional[bool] = True,  # 是否使用归一化
            use_act: Optional[bool] = True,  # 是否使用激活函数
    ) -> None:
        super().__init__()
 
        if isinstance(kernel_size, int):
            kernel_size = (kernel_size, kernel_size)
 
        if isinstance(stride, int):
            stride = (stride, stride)
 
        assert isinstance(kernel_size, Tuple)
        assert isinstance(stride, Tuple)
 
        padding = (
            int((kernel_size[0] - 1) / 2),
            int((kernel_size[1] - 1) / 2),
        )
 
        block = nn.Sequential()
 
        conv_layer = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            groups=groups,
            padding=padding,
            bias=bias
        )
 
        block.add_module(name="conv", module=conv_layer)
 
        if use_norm:
            norm_layer = nn.BatchNorm2d(num_features=out_channels, momentum=0.1)  # BatchNorm2d
            block.add_module(name="norm", module=norm_layer)
 
        if use_act:
            act_layer = nn.SiLU()  # Swish activation
            block.add_module(name="act", module=act_layer)
 
        self.block = block
 
    def forward(self, x: Tensor) -> Tensor:
        return self.block(x)
 
 
class MultiHeadAttention(nn.Module):
    """
    This layer applies a multi-head self- or cross-attention as described in
    `Attention is all you need <https://arxiv.org/abs/1706.03762>`_ paper
    Args:
        embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(N, P, C_{in})`
        num_heads (int): Number of heads in multi-head attention
        attn_dropout (float): Attention dropout. Default: 0.0
        bias (bool): Use bias or not. Default: ``True``
    Shape:
        - Input: :math:`(N, P, C_{in})` where :math:`N` is batch size, :math:`P` is number of patches,
        and :math:`C_{in}` is input embedding dim
        - Output: same shape as the input
    """
 
    def __init__(
            self,
            embed_dim: int,
            num_heads: int,
            attn_dropout: float = 0.0,
            bias: bool = True,
            *args,
            **kwargs
    ) -> None:
        super().__init__()
        if embed_dim % num_heads != 0:
            raise ValueError(
                "Embedding dim must be divisible by number of heads in {}. Got: embed_dim={} and num_heads={}".format(
                    self.__class__.__name__, embed_dim, num_heads
                )
            )
 
        self.qkv_proj = nn.Linear(in_features=embed_dim, out_features=3 * embed_dim, bias=bias)
 
        self.attn_dropout = nn.Dropout(p=attn_dropout)
        self.out_proj = nn.Linear(in_features=embed_dim, out_features=embed_dim, bias=bias)
 
        self.head_dim = embed_dim // num_heads
        self.scaling = self.head_dim ** -0.5
        self.softmax = nn.Softmax(dim=-1)
        self.num_heads = num_heads
        self.embed_dim = embed_dim
 
    def forward(self, x_q: Tensor) -> Tensor:
        # [N, P, C]
        b_sz, n_patches, in_channels = x_q.shape
 
        # self-attention
        # [N, P, C] -> [N, P, 3C] -> [N, P, 3, h, c] where C = hc
        qkv = self.qkv_proj(x_q).reshape(b_sz, n_patches, 3, self.num_heads, -1)
 
        # [N, P, 3, h, c] -> [N, h, 3, P, C]
        qkv = qkv.transpose(1, 3).contiguous()
 
        # [N, h, 3, P, C] -> [N, h, P, C] x 3
        query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
 
        query = query * self.scaling
 
        # [N h, P, c] -> [N, h, c, P]
        key = key.transpose(-1, -2)
 
        # QK^T
        # [N, h, P, c] x [N, h, c, P] -> [N, h, P, P]
        attn = torch.matmul(query, key)
        attn = self.softmax(attn)
        attn = self.attn_dropout(attn)
 
        # weighted sum
        # [N, h, P, P] x [N, h, P, c] -> [N, h, P, c]
        out = torch.matmul(attn, value)
 
        # [N, h, P, c] -> [N, P, h, c] -> [N, P, C]
        out = out.transpose(1, 2).reshape(b_sz, n_patches, -1)
        out = self.out_proj(out)
 
        return out
 
 
class TransformerEncoder(nn.Module):
    """
    This class defines the pre-norm `Transformer encoder <https://arxiv.org/abs/1706.03762>`_
    Args:
        embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(N, P, C_{in})`
        ffn_latent_dim (int): Inner dimension of the FFN
        num_heads (int) : Number of heads in multi-head attention. Default: 8
        attn_dropout (float): Dropout rate for attention in multi-head attention. Default: 0.0
        dropout (float): Dropout rate. Default: 0.0
        ffn_dropout (float): Dropout between FFN layers. Default: 0.0
    Shape:
        - Input: :math:`(N, P, C_{in})` where :math:`N` is batch size, :math:`P` is number of patches,
        and :math:`C_{in}` is input embedding dim
        - Output: same shape as the input
    """
 
    def __init__(
            self,
            embed_dim: int,
            ffn_latent_dim: int,
            num_heads: Optional[int] = 8,
            attn_dropout: Optional[float] = 0.0,
            dropout: Optional[float] = 0.0,
            ffn_dropout: Optional[float] = 0.0,
            *args,
            **kwargs
    ) -> None:
        super().__init__()
 
        attn_unit = MultiHeadAttention(
            embed_dim,
            num_heads,
            attn_dropout=attn_dropout,
            bias=True
        )
 
        self.pre_norm_mha = nn.Sequential(
            nn.LayerNorm(embed_dim),
            attn_unit,
            nn.Dropout(p=dropout)
        )
 
        self.pre_norm_ffn = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(in_features=embed_dim, out_features=ffn_latent_dim, bias=True),
            nn.SiLU(),
            nn.Dropout(p=ffn_dropout),
            nn.Linear(in_features=ffn_latent_dim, out_features=embed_dim, bias=True),
            nn.Dropout(p=dropout)
        )
        self.embed_dim = embed_dim
        self.ffn_dim = ffn_latent_dim
        self.ffn_dropout = ffn_dropout
        self.std_dropout = dropout
 
    def forward(self, x: Tensor) -> Tensor:
        # multi-head attention
        res = x
        x = self.pre_norm_mha(x)
        x = x + res
 
        # feed forward network
        x = x + self.pre_norm_ffn(x)
        return x
 
 
class LinearSelfAttention(nn.Module):
    """
    This layer applies a self-attention with linear complexity, as described in `MobileViTv2 <https://arxiv.org/abs/2206.02680>`_ paper.
    This layer can be used for self- as well as cross-attention.
    Args:
        opts: command line arguments
        embed_dim (int): :math:`C` from an expected input of size :math:`(N, C, H, W)`
        attn_dropout (Optional[float]): Dropout value for context scores. Default: 0.0
        bias (Optional[bool]): Use bias in learnable layers. Default: True
    Shape:
        - Input: :math:`(N, C, P, N)` where :math:`N` is the batch size, :math:`C` is the input channels,
        :math:`P` is the number of pixels in the patch, and :math:`N` is the number of patches
        - Output: same as the input
    .. note::
        For MobileViTv2, we unfold the feature map [B, C, H, W] into [B, C, P, N] where P is the number of pixels
        in a patch and N is the number of patches. Because channel is the first dimension in this unfolded tensor,
        we use point-wise convolution (instead of a linear layer). This avoids a transpose operation (which may be
        expensive on resource-constrained devices) that may be required to convert the unfolded tensor from
        channel-first to channel-last format in case of a linear layer.
    """
 
    def __init__(self,
                 embed_dim: int,
                 attn_dropout: Optional[float] = 0.0,
                 bias: Optional[bool] = True,
                 *args,
                 **kwargs) -> None:
        super().__init__()
        self.attn_dropout = nn.Dropout(p=attn_dropout)
        self.qkv_proj = ConvLayer(
            in_channels=embed_dim,
            out_channels=embed_dim * 2 + 1,
            kernel_size=1,
            bias=bias,
            use_norm=False,
            use_act=False
        )
        self.out_proj = ConvLayer(
            in_channels=embed_dim,
            out_channels=embed_dim,
            bias=bias,
            kernel_size=1,
            use_norm=False,
            use_act=False,
        )
        self.embed_dim = embed_dim
 
    def forward(self, x: Tensor, x_prev: Optional[Tensor] = None, *args, **kwargs) -> Tensor:
        if x_prev is None:
            return self._forward_self_attn(x, *args, **kwargs)
        else:
            return self._forward_cross_attn(x, x_prev, *args, **kwargs)
 
    def _forward_self_attn(self, x: Tensor, *args, **kwargs) -> Tensor:
        # [B, C, P, N] --> [B, h + 2d, P, N]
        qkv = self.qkv_proj(x)
 
        # [B, h + 2d, P, N] --> [B, h, P, N], [B, d, P, N], [B, 1, P, N]
        # Query --> [B, 1, P ,N]
        # Value, key --> [B, d, P, N]
        query, key, value = torch.split(
            qkv, [1, self.embed_dim, self.embed_dim], dim=1
        )
        # 在M通道上做softmax
        context_scores = F.softmax(query, dim=-1)
        context_scores = self.attn_dropout(context_scores)
 
        # Compute context vector
        # [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N]
        context_vector = key * context_scores
        # [B, d, P, N] --> [B, d, P, 1]
        context_vector = context_vector.sum(dim=-1, keepdim=True)
 
        # combine context vector with values
        # [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
        out = F.relu(value) * context_vector.expand_as(value)
        out = self.out_proj(out)
        return out
 
    def _forward_cross_attn(
            self, x: Tensor, x_prev: Optional[Tensor] = None, *args, **kwargs):
        # x --> [B, C, P, N]
        # x_prev --> [B, C, P, N]
 
        batch_size, in_dim, kv_patch_area, kv_num_patches = x.shape
        q_patch_area, q_num_patches = x.shape[-2:]
 
        assert (
                kv_patch_area == q_patch_area
        ), "The number of patches in the query and key-value tensors must be the same"
 
        # compute query, key, and value
        # [B, C, P, M] --> [B, 1 + d, P, M]
        qk = F.conv2d(
            x_prev,
            weight=self.qkv_proj.block.conv.weight[: self.embed_dim + 1, ...],
            bias=self.qkv_proj.block.conv.bias[: self.embed_dim + 1, ...],
        )
 
        # [B, 1 + d, P, M] --> [B, 1, P, M], [B, d, P, M]
        query, key = torch.split(qk, split_size_or_sections=[1, self.embed_dim], dim=1)
        # [B, C, P, N] --> [B, d, P, N]
        value = F.conv2d(
            x,
            weight=self.qkv_proj.block.conv.weight[self.embed_dim + 1:, ...],
            bias=self.qkv_proj.block.conv.bias[self.embed_dim + 1:, ...],
        )
 
        context_scores = F.softmax(query, dim=-1)
        context_scores = self.attn_dropout(context_scores)
 
        context_vector = key * context_scores
        context_vector = torch.sum(context_vector, dim=-1, keepdim=True)
 
        out = F.relu(value) * context_vector.expand_as(value)
        out = self.out_proj(out)
 
        return out
 
 
class LinearAttnFFN(nn.Module):
    """
    This class defines the pre-norm transformer encoder with linear self-attention in `MobileViTv2 <https://arxiv.org/abs/2206.02680>`_ paper
    Args:
        embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, P, N)`
        ffn_latent_dim (int): Inner dimension of the FFN
        attn_dropout (Optional[float]): Dropout rate for attention in multi-head attention. Default: 0.0
        dropout (Optional[float]): Dropout rate. Default: 0.0
        ffn_dropout (Optional[float]): Dropout between FFN layers. Default: 0.0
        norm_layer (Optional[str]): Normalization layer. Default: layer_norm_2d
    Shape:
        - Input: :math:`(B, C_{in}, P, N)` where :math:`B` is batch size, :math:`C_{in}` is input embedding dim,
            :math:`P` is number of pixels in a patch, and :math:`N` is number of patches,
        - Output: same shape as the input
    """
 
    def __init__(
            self,
            embed_dim: int,
            ffn_latent_dim: int,
            attn_dropout: Optional[float] = 0.0,
            dropout: Optional[float] = 0.1,
            ffn_dropout: Optional[float] = 0.0,
            *args,
            **kwargs
    ) -> None:
        super().__init__()
        attn_unit = LinearSelfAttention(
            embed_dim=embed_dim, attn_dropout=attn_dropout, bias=True
        )
        self.pre_norm_attn = nn.Sequential(
            nn.GroupNorm(num_channels=embed_dim, num_groups=1),
            attn_unit,
            nn.Dropout(p=dropout)
        )
        self.pre_norm_ffn = nn.Sequential(
            nn.GroupNorm(num_channels=embed_dim, num_groups=1),
            ConvLayer(
                in_channels=embed_dim,
                out_channels=ffn_latent_dim,
                kernel_size=1,
                stride=1,
                bias=True,
                use_norm=False,
                use_act=True,
            ),
            nn.Dropout(p=ffn_dropout),
            ConvLayer(
                in_channels=ffn_latent_dim,
                out_channels=embed_dim,
                kernel_size=1,
                stride=1,
                bias=True,
                use_norm=False,
                use_act=False,
            ),
            nn.Dropout(p=dropout)
        )
        self.embed_dim = embed_dim
        self.ffn_dim = ffn_latent_dim
        self.ffn_dropout = ffn_dropout
        self.std_dropout = dropout
 
    def forward(self,
                x: Tensor, x_prev: Optional[Tensor] = None, *args, **kwargs
                ) -> Tensor:
        if x_prev is None:
            # self-attention
            x = x + self.pre_norm_attn(x)
        else:
            # cross-attention
            res = x
            x = self.pre_norm_attn[0](x)  # norm
            x = self.pre_norm_attn[1](x, x_prev)  # attn
            x = self.pre_norm_attn[2](x)  # drop
            x = x + res  # residual
        x = x + self.pre_norm_ffn(x)
        return x
 
def make_divisible(
        v: Union[float, int],
        divisor: Optional[int] = 8,
        min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
 
 
class Identity(nn.Module):
    """
    This is a place-holder and returns the same tensor.
    """
 
    def __init__(self):
        super(Identity, self).__init__()
 
    def forward(self, x: Tensor) -> Tensor:
        return x
 
    def profile_module(self, x: Tensor) -> Tuple[Tensor, float, float]:
        return x, 0.0, 0.0
 
 
class InvertedResidual(nn.Module):
    """
    This class implements the inverted residual block, as described in `MobileNetv2 <https://arxiv.org/abs/1801.04381>`_ paper
    Args:
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H_{in}, W_{in})`
        out_channels (int): :math:`C_{out}` from an expected output of size :math:`(N, C_{out}, H_{out}, W_{out)`
        stride (int): Use convolutions with a stride. Default: 1
        expand_ratio (Union[int, float]): Expand the input channels by this factor in depth-wise conv
        skip_connection (Optional[bool]): Use skip-connection. Default: True
    Shape:
        - Input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - Output: :math:`(N, C_{out}, H_{out}, W_{out})`
    .. note::
        If `in_channels =! out_channels` and `stride > 1`, we set `skip_connection=False`
    """
 
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            stride: int,
            expand_ratio: Union[int, float],  # 扩张因子,到底要在隐层将通道数扩张多少倍
            skip_connection: Optional[bool] = True,  # 是否使用跳跃连接
    ) -> None:
        assert stride in [1, 2]
        hidden_dim = make_divisible(int(round(in_channels * expand_ratio)), 8)
 
        super().__init__()
 
        block = nn.Sequential()
        if expand_ratio != 1:
            block.add_module(
                name="exp_1x1",
                module=ConvLayer(
                    in_channels=in_channels,
                    out_channels=hidden_dim,
                    kernel_size=1
                ),
            )
 
        block.add_module(
            name="conv_3x3",
            module=ConvLayer(
                in_channels=hidden_dim,
                out_channels=hidden_dim,
                stride=stride,
                kernel_size=3,
                groups=hidden_dim  # depth-wise convolution
            ),
        )
 
        block.add_module(
            name="red_1x1",
            module=ConvLayer(
                in_channels=hidden_dim,
                out_channels=out_channels,
                kernel_size=1,
                use_act=False,  # 最后一层不使用激活函数
                use_norm=True,
            ),
        )
 
        self.block = block
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.exp = expand_ratio
        self.stride = stride
        self.use_res_connect = (
                self.stride == 1 and in_channels == out_channels and skip_connection
        )
 
    def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
        if self.use_res_connect:  # 如果需要使用残差连接
            return x + self.block(x)
        else:
            return self.block(x)
 
 
class MobileViTBlock(nn.Module):
    """
    This class defines the `MobileViT block <https://arxiv.org/abs/2110.02178?context=cs.LG>`_
    Args:
        opts: command line arguments
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H, W)`
        transformer_dim (int): Input dimension to the transformer unit
        ffn_dim (int): Dimension of the FFN block
        n_transformer_blocks (int): Number of transformer blocks. Default: 2
        head_dim (int): Head dimension in the multi-head attention. Default: 32
        attn_dropout (float): Dropout in multi-head attention. Default: 0.0
        dropout (float): Dropout rate. Default: 0.0
        ffn_dropout (float): Dropout between FFN layers in transformer. Default: 0.0
        patch_h (int): Patch height for unfolding operation. Default: 8
        patch_w (int): Patch width for unfolding operation. Default: 8
        transformer_norm_layer (Optional[str]): Normalization layer in the transformer block. Default: layer_norm
        conv_ksize (int): Kernel size to learn local representations in MobileViT block. Default: 3
        no_fusion (Optional[bool]): Do not combine the input and output feature maps. Default: False
    """
 
    def __init__(
            self,
            in_channels: int,  # 输入通道数
            transformer_dim: int,  # 输入到transformer的每个token序列长度
            ffn_dim: int,  # feed forward network的维度
            n_transformer_blocks: int = 2,  # transformer block的个数
            head_dim: int = 32,
            attn_dropout: float = 0.0,
            dropout: float = 0.0,
            ffn_dropout: float = 0.0,
            patch_h: int = 8,
            patch_w: int = 8,
            conv_ksize: Optional[int] = 3,  # 卷积核大小
            *args,
            **kwargs
    ) -> None:
        super().__init__()
 
        conv_3x3_in = ConvLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1
        )
        conv_1x1_in = ConvLayer(
            in_channels=in_channels,
            out_channels=transformer_dim,
            kernel_size=1,
            stride=1,
            use_norm=False,
            use_act=False
        )
 
        conv_1x1_out = ConvLayer(
            in_channels=transformer_dim,
            out_channels=in_channels,
            kernel_size=1,
            stride=1
        )
        conv_3x3_out = ConvLayer(
            in_channels=2 * in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1
        )
 
        self.local_rep = nn.Sequential()
        self.local_rep.add_module(name="conv_3x3", module=conv_3x3_in)
        self.local_rep.add_module(name="conv_1x1", module=conv_1x1_in)
 
        assert transformer_dim % head_dim == 0  # 验证transformer_dim是否可以被head_dim整除
        num_heads = transformer_dim // head_dim
 
        global_rep = [
            TransformerEncoder(
                embed_dim=transformer_dim,
                ffn_latent_dim=ffn_dim,
                num_heads=num_heads,
                attn_dropout=attn_dropout,
                dropout=dropout,
                ffn_dropout=ffn_dropout
            )
            for _ in range(n_transformer_blocks)
        ]
        global_rep.append(nn.LayerNorm(transformer_dim))
        self.global_rep = nn.Sequential(*global_rep)
 
        self.conv_proj = conv_1x1_out
        self.fusion = conv_3x3_out
 
        self.patch_h = patch_h
        self.patch_w = patch_w
        self.patch_area = self.patch_w * self.patch_h
 
        self.cnn_in_dim = in_channels
        self.cnn_out_dim = transformer_dim
        self.n_heads = num_heads
        self.ffn_dim = ffn_dim
        self.dropout = dropout
        self.attn_dropout = attn_dropout
        self.ffn_dropout = ffn_dropout
        self.n_blocks = n_transformer_blocks
        self.conv_ksize = conv_ksize
 
    def unfolding(self, x: Tensor) -> Tuple[Tensor, Dict]:
        patch_w, patch_h = self.patch_w, self.patch_h
        patch_area = patch_w * patch_h
        batch_size, in_channels, orig_h, orig_w = x.shape
 
        new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)  # 为后文判断是否需要插值做准备
        new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)  # 为后文判断是否需要插值做准备
 
        interpolate = False
        if new_w != orig_w or new_h != orig_h:
            # Note: Padding can be done, but then it needs to be handled in attention function.
            x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=False)
            interpolate = True
 
        # number of patches along width and height
        num_patch_w = new_w // patch_w  # n_w
        num_patch_h = new_h // patch_h  # n_h
        num_patches = num_patch_h * num_patch_w  # N
 
        # [B, C, H, W] -> [B * C * n_h, p_h, n_w, p_w]
        x = x.reshape(batch_size * in_channels * num_patch_h, patch_h, num_patch_w, patch_w)
        # [B * C * n_h, p_h, n_w, p_w] -> [B * C * n_h, n_w, p_h, p_w]
        x = x.transpose(1, 2)
        # [B * C * n_h, n_w, p_h, p_w] -> [B, C, N, P] where P = p_h * p_w and N = n_h * n_w
        x = x.reshape(batch_size, in_channels, num_patches, patch_area)
        # [B, C, N, P] -> [B, P, N, C]
        x = x.transpose(1, 3)
        # [B, P, N, C] -> [BP, N, C]
        x = x.reshape(batch_size * patch_area, num_patches, -1)
 
        info_dict = {
            "orig_size": (orig_h, orig_w),
            "batch_size": batch_size,
            "interpolate": interpolate,
            "total_patches": num_patches,
            "num_patches_w": num_patch_w,
            "num_patches_h": num_patch_h,
        }
 
        return x, info_dict
 
    def folding(self, x: Tensor, info_dict: Dict) -> Tensor:
        n_dim = x.dim()
        assert n_dim == 3, "Tensor should be of shape BPxNxC. Got: {}".format(
            x.shape
        )
        # [BP, N, C] --> [B, P, N, C]
        # 将x变成连续的张量,以便进行重塑操作
        x = x.contiguous().view(
            # 重塑x的第一个维度为批量大小
            info_dict["batch_size"],
            # 重塑x的第二个维度为每个图像块的像素数
            self.patch_area,
            # 重塑x的第三个维度为每个批次中的图像块总数
            info_dict["total_patches"],
            # 保持x的最后一个维度不变
            -1
        )
 
        batch_size, pixels, num_patches, channels = x.size()
        num_patch_h = info_dict["num_patches_h"]
        num_patch_w = info_dict["num_patches_w"]
 
        # [B, P, N, C] -> [B, C, N, P]
        x = x.transpose(1, 3)
        # [B, C, N, P] -> [B*C*n_h, n_w, p_h, p_w]
        x = x.reshape(batch_size * channels * num_patch_h, num_patch_w, self.patch_h, self.patch_w)
        # [B*C*n_h, n_w, p_h, p_w] -> [B*C*n_h, p_h, n_w, p_w]
        x = x.transpose(1, 2)
        # [B*C*n_h, p_h, n_w, p_w] -> [B, C, H, W]
        x = x.reshape(batch_size, channels, num_patch_h * self.patch_h, num_patch_w * self.patch_w)
        if info_dict["interpolate"]:
            x = F.interpolate(
                x,
                size=info_dict["orig_size"],
                mode="bilinear",
                align_corners=False,
            )
        return x
 
    def forward(self, x: Tensor) -> Tensor:
        res = x
 
        fm = self.local_rep(x)  # [4, 64, 28, 28]
 
        # convert feature map to patches
        patches, info_dict = self.unfolding(fm)  # [16, 196, 64]
        # print(patches.shape)
        # learn global representations
        for transformer_layer in self.global_rep:
            patches = transformer_layer(patches)
 
        # [B x Patch x Patches x C] -> [B x C x Patches x Patch]
        # Patch 所有的条状Patch的数量
        # Patches 每个条状Patch的长度
        fm = self.folding(x=patches, info_dict=info_dict)
 
        fm = self.conv_proj(fm)
 
        fm = self.fusion(torch.cat((res, fm), dim=1))
        return fm
 
 
class MobileViTBlockV2(nn.Module):
    """
    This class defines the `MobileViTv2 <https://arxiv.org/abs/2206.02680>`_ block
    Args:
        opts: command line arguments
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H, W)`
        attn_unit_dim (int): Input dimension to the attention unit
        ffn_multiplier (int): Expand the input dimensions by this factor in FFN. Default is 2.
        n_attn_blocks (Optional[int]): Number of attention units. Default: 2
        attn_dropout (Optional[float]): Dropout in multi-head attention. Default: 0.0
        dropout (Optional[float]): Dropout rate. Default: 0.0
        ffn_dropout (Optional[float]): Dropout between FFN layers in transformer. Default: 0.0
        patch_h (Optional[int]): Patch height for unfolding operation. Default: 8
        patch_w (Optional[int]): Patch width for unfolding operation. Default: 8
        conv_ksize (Optional[int]): Kernel size to learn local representations in MobileViT block. Default: 3
        dilation (Optional[int]): Dilation rate in convolutions. Default: 1
        attn_norm_layer (Optional[str]): Normalization layer in the attention block. Default: layer_norm_2d
    """
 
    def __init__(self,
                 in_channels: int,
                 attn_unit_dim: int,
                 ffn_multiplier: Optional[Union[Sequence[Union[int, float]], int, float]] = 2.0,
                 n_transformer_blocks: Optional[int] = 2,
                 attn_dropout: Optional[float] = 0.0,
                 dropout: Optional[float] = 0.0,
                 ffn_dropout: Optional[float] = 0.0,
                 patch_h: Optional[int] = 8,
                 patch_w: Optional[int] = 8,
                 conv_ksize: Optional[int] = 3,
                 *args,
                 **kwargs) -> None:
        super(MobileViTBlockV2, self).__init__()
        cnn_out_dim = attn_unit_dim
        conv_3x3_in = ConvLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1,
            use_norm=True,
            use_act=True,
            groups=in_channels,
        )
        conv_1x1_in = ConvLayer(
            in_channels=in_channels,
            out_channels=cnn_out_dim,
            kernel_size=1,
            stride=1,
            use_norm=False,
            use_act=False,
        )
        self.local_rep = nn.Sequential(conv_3x3_in, conv_1x1_in)
        self.global_rep, attn_unit_dim = self._build_attn_layer(
            d_model=attn_unit_dim,
            ffn_mult=ffn_multiplier,
            n_layers=n_transformer_blocks,
            attn_dropout=attn_dropout,
            dropout=dropout,
            ffn_dropout=ffn_dropout,
        )
        self.conv_proj = ConvLayer(
            in_channels=cnn_out_dim,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            use_norm=True,
            use_act=False,
        )
 
        self.patch_h = patch_h
        self.patch_w = patch_w
        self.patch_area = self.patch_w * self.patch_h
 
        self.cnn_in_dim = in_channels
        self.cnn_out_dim = cnn_out_dim
        self.transformer_in_dim = attn_unit_dim
        self.dropout = dropout
        self.attn_dropout = attn_dropout
        self.ffn_dropout = ffn_dropout
        self.n_blocks = n_transformer_blocks
        self.conv_ksize = conv_ksize
 
    def _build_attn_layer(self,
                          d_model: int,
                          ffn_mult: Union[Sequence, int, float],
                          n_layers: int,
                          attn_dropout: float,
                          dropout: float,
                          ffn_dropout: float,
                          attn_norm_layer: str = "layer_norm_2d",
                          *args,
                          **kwargs) -> Tuple[nn.Module, int]:
        if isinstance(ffn_mult, Sequence) and len(ffn_mult) == 2:
            ffn_dims = (
                    np.linspace(ffn_mult[0], ffn_mult[1], n_layers, dtype=float) * d_model
            )
        elif isinstance(ffn_mult, Sequence) and len(ffn_mult) == 1:
            ffn_dims = [ffn_mult[0] * d_model] * n_layers
        elif isinstance(ffn_mult, (int, float)):
            ffn_dims = [ffn_mult * d_model] * n_layers
        else:
            raise NotImplementedError
 
        ffn_dims = [int((d // 16) * 16) for d in ffn_dims]
 
        global_rep = [
            LinearAttnFFN(
                embed_dim=d_model,
                ffn_latent_dim=ffn_dims[block_idx],
                attn_dropout=attn_dropout,
                dropout=dropout,
                ffn_dropout=ffn_dropout,
            )
            for block_idx in range(n_layers)
        ]
        global_rep.append(nn.GroupNorm(1, d_model))
        return nn.Sequential(*global_rep), d_model
 
    def forward(
            self, x: Union[Tensor, Tuple[Tensor]], *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        if isinstance(x, Tuple) and len(x) == 2:
            # for spatio-temporal data (e.g., videos)
            return self.forward_temporal(x=x[0], x_prev=x[1])
        elif isinstance(x, Tensor):
            # for image data
            return self.forward_spatial(x)
        else:
            raise NotImplementedError
 
    def forward_spatial(self, x: Tensor, *args, **kwargs) -> Tensor:
        x = self.resize_input_if_needed(x)
        # learn global representations on all patches
        fm = self.local_rep(x)
        patches, output_size = self.unfolding_pytorch(fm)
        # print(f"original x.shape = {patches.shape}")
        patches = self.global_rep(patches)
        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        fm = self.folding_pytorch(patches=patches, output_size=output_size)
        fm = self.conv_proj(fm)
        return fm
 
    def forward_temporal(
            self, x: Tensor, x_prev: Optional[Tensor] = None
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        x = self.resize_input_if_needed(x)
 
        fm = self.local_rep(x)
        patches, output_size = self.unfolding_pytorch(fm)
        for global_layer in self.global_rep:
            if isinstance(global_layer, LinearAttnFFN):
                patches = global_layer(x=patches, x_prev=x_prev)
            else:
                patches = global_layer(patches)
        fm = self.folding_pytorch(patches=patches, output_size=output_size)
        fm = self.conv_proj(fm)
 
        return fm, patches
 
    def resize_input_if_needed(self, x: Tensor) -> Tensor:
        # print(f"original x.shape = {x.shape}")
        batch_size, in_channels, orig_h, orig_w = x.shape
        if orig_h % self.patch_h != 0 or orig_w % self.patch_w != 0:
            new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)
            new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)
            x = F.interpolate(
                x, size=(new_h, new_w), mode="bilinear", align_corners=True
            )
        # print(f"changed x.shape = {x.shape}")
        return x
 
    def unfolding_pytorch(self, feature_map: Tensor) -> Tuple[Tensor, Tuple[int, int]]:
 
        batch_size, in_channels, img_h, img_w = feature_map.shape
 
        # [B, C, H, W] --> [B, C, P, N]
        patches = F.unfold(
            feature_map,
            kernel_size=(self.patch_h, self.patch_w),
            stride=(self.patch_h, self.patch_w),
        )
        patches = patches.reshape(
            batch_size, in_channels, self.patch_h * self.patch_w, -1
        )
 
        return patches, (img_h, img_w)
 
    def folding_pytorch(self, patches: Tensor, output_size: Tuple[int, int]) -> Tensor:
        batch_size, in_dim, patch_size, n_patches = patches.shape
 
        # [B, C, P, N]
        patches = patches.reshape(batch_size, in_dim * patch_size, n_patches)
 
        feature_map = F.fold(
            patches,
            output_size=output_size,
            kernel_size=(self.patch_h, self.patch_w),
            stride=(self.patch_h, self.patch_w),
        )
 
        return feature_map
 
 
class MobileViT(nn.Module):
    """
    This class implements the `MobileViT architecture <https://arxiv.org/abs/2110.02178?context=cs.LG>`_
    """
 
    def __init__(self, model_cfg: Dict, num_classes: int = 1000):
        super().__init__()
 
        image_channels = 3
        out_channels = 16
 
        self.conv_1 = ConvLayer(
            in_channels=image_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=2
        )
 
        self.layer_1, out_channels = self._make_layer(input_channel=out_channels, cfg=model_cfg["layer1"])
        self.layer_2, out_channels = self._make_layer(input_channel=out_channels, cfg=model_cfg["layer2"])
        self.layer_3, out_channels = self._make_layer(input_channel=out_channels, cfg=model_cfg["layer3"])
        self.layer_4, out_channels = self._make_layer(input_channel=out_channels, cfg=model_cfg["layer4"])
        self.layer_5, out_channels = self._make_layer(input_channel=out_channels, cfg=model_cfg["layer5"])
 
        exp_channels = min(model_cfg["last_layer_exp_factor"] * out_channels, 960)
        self.conv_1x1_exp = ConvLayer(
            in_channels=out_channels,
            out_channels=exp_channels,
            kernel_size=1
        )
 
        self.classifier = nn.Sequential()  # 有可能会被冻结,来进行网络微调
        self.classifier.add_module(name="global_pool", module=nn.AdaptiveAvgPool2d(1))
        self.classifier.add_module(name="flatten", module=nn.Flatten())
        if 0.0 < model_cfg["cls_dropout"] < 1.0:
            self.classifier.add_module(name="dropout", module=nn.Dropout(p=model_cfg["cls_dropout"]))
        self.classifier.add_module(name="fc", module=nn.Linear(in_features=exp_channels, out_features=num_classes))
 
        # weight init
        self.apply(self.init_parameters)
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
 
 
    def _make_layer(self, input_channel, cfg: Dict) -> Tuple[nn.Sequential, int]:
        block_type = cfg.get("block_type", "mobilevit")
        if block_type.lower() == "mobilevit":
            return self._make_mit_layer(input_channel=input_channel, cfg=cfg)
        else:
            return self._make_mobilenet_layer(input_channel=input_channel, cfg=cfg)
 
    @staticmethod
    def _make_mobilenet_layer(input_channel: int, cfg: Dict) -> Tuple[nn.Sequential, int]:
        output_channels = cfg.get("out_channels")
        num_blocks = cfg.get("num_blocks", 2)
        expand_ratio = cfg.get("expand_ratio", 4)
        block = []
 
        for i in range(num_blocks):
            stride = cfg.get("stride", 1) if i == 0 else 1
 
            layer = InvertedResidual(
                in_channels=input_channel,
                out_channels=output_channels,
                stride=stride,
                expand_ratio=expand_ratio
            )
            block.append(layer)
            input_channel = output_channels
 
        return nn.Sequential(*block), input_channel
 
    @staticmethod
    def _make_mit_layer(input_channel: int, cfg: Dict) -> [nn.Sequential, int]:
        stride = cfg.get("stride", 1)
        block = []
 
        if stride == 2:
            layer = InvertedResidual(
                in_channels=input_channel,
                out_channels=cfg.get("out_channels"),
                stride=stride,
                expand_ratio=cfg.get("mv_expand_ratio", 4)
            )
 
            block.append(layer)
            input_channel = cfg.get("out_channels")
 
        transformer_dim = cfg["transformer_channels"]
        ffn_dim = cfg.get("ffn_dim")
        num_heads = cfg.get("num_heads", 4)
        head_dim = transformer_dim // num_heads
 
        if transformer_dim % head_dim != 0:
            raise ValueError("Transformer input dimension should be divisible by head dimension. "
                             "Got {} and {}.".format(transformer_dim, head_dim))
 
        block.append(MobileViTBlock(
            in_channels=input_channel,
            transformer_dim=transformer_dim,
            ffn_dim=ffn_dim,
            n_transformer_blocks=cfg.get("transformer_blocks", 1),
            patch_h=cfg.get("patch_h", 2),
            patch_w=cfg.get("patch_w", 2),
            dropout=cfg.get("dropout", 0.1),
            ffn_dropout=cfg.get("ffn_dropout", 0.0),
            attn_dropout=cfg.get("attn_dropout", 0.1),
            head_dim=head_dim,
            conv_ksize=3
        ))
 
        return nn.Sequential(*block), input_channel
 
    @staticmethod
    def init_parameters(m):
        if isinstance(m, nn.Conv2d):
            if m.weight is not None:
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
            if m.weight is not None:
                nn.init.ones_(m.weight)
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, (nn.Linear,)):
            if m.weight is not None:
                nn.init.trunc_normal_(m.weight, mean=0.0, std=0.02)
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        else:
            pass
 
    def forward(self, x):
        unique_tensors = {}
        x = self.conv_1(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        x = self.layer_1(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        x = self.layer_2(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        x = self.layer_3(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        x = self.layer_4(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        x = self.layer_5(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        x = self.conv_1x1_exp(x)
        width, height = x.shape[2], x.shape[3]
        unique_tensors[(width, height)] = x
        result_list = list(unique_tensors.values())[-4:]
        return result_list
 
 
 
def mobile_vit_xx_small(num_classes: int = 1000):
    # pretrain weight link
    # https://docs-assets.developer.apple.com/ml-research/models/cvnets/classification/mobilevit_xxs.pt
    config = get_config("xx_small")
    m = MobileViT(config, num_classes=num_classes)
    return m
 
 
def mobile_vit_x_small(num_classes: int = 1000):
    # pretrain weight link
    # https://docs-assets.developer.apple.com/ml-research/models/cvnets/classification/mobilevit_xs.pt
    config = get_config("x_small")
    m = MobileViT(config, num_classes=num_classes)
    return m
 
 
def mobile_vit_small(num_classes: int = 1000):
    # pretrain weight link
    # https://docs-assets.developer.apple.com/ml-research/models/cvnets/classification/mobilevit_s.pt
    config = get_config("small")
    m = MobileViT(config, num_classes=num_classes)
    return m
 
 
 
if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)
    # Model
    model = mobile_vit_xx_small()
    out = model(image)
    print(out.size())

2.2 步骤二

在task.py导入我们的模块

from .modules.MobileNetV1  import mobile_vit_small, mobile_vit_x_small, mobile_vit_xx_small

2.3 步骤三

如下图标注框所示,添加两行代码

2.4 步骤四

在task.py如下图所示位置,添加标注框内所示代码

  elif m in {mobile_vit_small, mobile_vit_x_small, mobile_vit_xx_small}:
            m = m(*args)
            c2 = m.width_list
            backbone = True

2.5 步骤五

在task.py如下图所示位置,找到标注所示位置

修改为下图所示

   if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
 
 
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type

2.6 步骤六

在task.py如下图所示位置的代码需要替换

替换为下图所示代码

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
 
        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)

2.7 步骤七

这次修改在base_model的predict_once方法里面,在task.py的前面部分代码中。

在task.py如下图所示位置的代码需要替换

替换为下图所示代码

 def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

2.8 步骤八

将下图所示代码注释掉,在ultralytics/utils/torch_utils.py中

修改为下图所示

2.9 步骤九

将下图所示代码注释掉,在task.py中,改为s=640

到这里完成修改,但是这里面细节很多,大家一定要注意,仔细修改,步骤比较多,出现错误很难找出来

复制下面的yaml文件运行即可

yaml文件


# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
 

# ['mobile_vit_small', 'mobile_vit_x_small', 'mobile_vit_xx_small']
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, mobile_vit_xx_small, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)
 
  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 今天这个修改的地方比较多,大家一定要仔细检查

不知不觉已经看完了哦,动动小手留个点赞吧--_--


http://www.kler.cn/a/302759.html

相关文章:

  • 【面试题】发起一次网络请求,当请求>=1s,立马中断
  • JWT深度解析:Java Web中的安全传输与身份验证
  • MySQL重难点(一)索引
  • Fastapi使用MongoDB作为数据库
  • 《MYSQL45讲》误删数据怎么办
  • 【Linux】TCP原理
  • 9.13信锐面经
  • 【北京迅为】《STM32MP157开发板使用手册》-第十八章 Debian文件系统
  • JavaScript使用地理位置 API
  • k8s--资源管理
  • js几个常用数组处理函数(或数组对象处理函数)的使用方法
  • 内存分配形式介绍,你知道哪些?
  • proteus+51单片机+AD/DA学习5
  • 性能测试有哪些典型问题?怎样去定位具体原因?
  • numpy03:numpy广播机制,花式索引取值,统计方法,数组的拆分与合并,线性代数方法
  • C++ 左值与右值浅谈
  • 每天一道面试题(9):lock 和 synchronized 区别
  • C# WPF中实现图表生成的五种方式
  • 【SpringCloud】微服务架构演进与Spring Cloud简介
  • 基于spring的博客系统(二)
  • Go Playground 在线编程环境
  • 优购电商小程序的设计与实现+ssm(lw+演示+源码+运行)
  • MySql8.x---开窗函数
  • HTTP 协议介绍
  • JS手写实现深拷贝
  • mysql性能优化-云服务与数据库即服务(DBaaS)优化