当前位置: 首页 > article >正文

在Linux中从视频流截取图片帧(ffmpeg )

Linux依赖说明:

说明: 使用到的 依赖包  

1. ffmpeg

sudo apt update 
sudo apt-get install ffmpeg

2. imagemagick (选装)
(检测图像边缘信息推断清晰度,如果是简单截取但个图像帧=>用不到<=)

sudo apt-get install imagemagick

备注: 
指令及相关参数说明

核心指令: (作用: 执行 ffmpeg 命令提取帧,每10帧选择一帧, 一共提取5张)

示例:

ffmpeg -i “https://cdn.pixabay.com/video/2023/10/22/186115-877653483_large.mp4” -vf “select=‘not(mod(n,10))’” -frames:v 5 -q:v 1 output_%03d.jpg

指令说明:

这条 ffmpeg 命令从视频流中提取帧并保存为图片,具体的参数含义如下:

1. ffmpeg -i "https://cdn.pixabay.com/video/2023/10/22/186115-877653483_large.mp4"

  • ffmpeg:调用 ffmpeg 命令。
  • -i "https://cdn.pixabay.com/video/2023/10/22/186115-877653483_large.mp4":指定输入文件,视频源为给定的网络视频 URL。

2. -vf "select='not(mod(n,10))'"

  • -vf:表示使用视频滤镜。

  • "select='not(mod(n,10))'"
    

    :视频帧选择器,这里

    mod(n,10)
    

    表示每 10 帧提取一次帧。

    n
    

    是当前帧的编号,

    mod(n,10)
    

    计算帧编号除以 10 的余数,

    not(mod(n,10))
    

    选择那些编号是 10 的倍数的帧。

    • 换句话说,这条命令每 10 帧提取一个帧。

3. -frames:v 5

  • 只提取 5 帧图片。

4. -q:v 1

  • -q:v 设置视频帧的质量,范围为 1 到 31,值越小质量越高,1 是最高质量。

5. output_%03d.jpg

  • 输出文件名模板。%03d 是一个占位符,表示文件名中包含 3 位数字(例如 output_001.jpgoutput_002.jpg),这样可以保存多个帧。

整体含义:

从视频中每隔 10 帧提取一个帧,总共提取 5 帧,保存为高质量的 JPEG 图片文件,文件名为 output_001.jpg, output_002.jpg, 以此类推。

指令执行完可见当前文件夹中文件:

在这里插入图片描述

具体的命令可根据需求情况进行修改, 到这里文章的标题功能就已经实现了.

下面是加餐环节


需求: 提取视频中的图片帧, 并从多张中选取最清晰的一张照片

注: 其中的文件路径需要改为自己所存在的路径

这里准备了三个脚本文件如下:

  • extract_frames.sh 提取视频帧输出指定张数据照片并存到指定位置 并执行 detect_sharpness.sh 脚本(已注释掉, 需要的话自行打开)
  • detect_sharpness.sh 从多张照片中选择最清晰的一张 并将其余的照片删除, 且保留最清晰一张并重命名
  • create_directory.sh 判断文件夹是否存在, 不存在则创建, 存在则不处理

extract_frames.sh

提取视频帧输出指定张数据照片并存到指定位置 并执行 detect_sharpness.sh 脚本

注: 执行该脚本需要指定—视频路径

示例:

/data/hikuser/handler_video_to_picture/extract_frames.sh  https://cdn.pixabay.com/video/2023/10/22/186115-877653483_large.mp4
#!/bin/bash

# 删除指定目录下已有的图片
rm -f /data/hikuser/handler_video_to_picture/output*.jpg

# 检查是否提供了视频流 URL 参数
if [ "$#" -ne 1 ]; then
    echo "Usage: ${0##*/} <video_stream_url>"
    exit 1
fi

# 视频流 URL
VIDEO_URL="$1"

# 检查输出目录是否存在
if [ ! -d "/data/hikuser/handler_video_to_picture" ]; then
    echo "Directory /data/hikuser/handler_video_to_picture does not exist."
    exit 1
fi

# 执行 ffmpeg 命令提取帧,每10帧选择一帧, 一共提取5张
if ! ffmpeg -i "$VIDEO_URL" -vf "select='not(mod(n,10))'" -frames:v 5 -q:v 1 /data/hikuser/handler_video_to_picture/output_%03d.jpg; then
    echo "ffmpeg command failed."
    exit 1
fi

# 执行检测图片清晰度的脚本
# if [ -f /data/hikuser/handler_video_to_picture/detect_sharpness.sh ]; then
#    /bin/bash /data/hikuser/handler_video_to_picture/detect_sharpness.sh
# else
#    echo "detect_sharpness.sh script not found!"
#    exit 1
# fi

detect_sharpness.sh

从多张照片中选择像素最高的一张 并将其余的照片删除, 并将最新的一张重命名

#!/bin/bash

# 初始化最大边缘值和最清晰的图片变量
max_edge_value=0
sharpest_image=""

# 进入图片所在目录
cd /data/hikuser/handler_video_to_picture || exit 1

# 遍历每张图片并计算边缘值
for img in output_*.jpg; do
    # 计算图片的边缘检测值
    edge_value=$(convert "$img" -edge 1 -format "%[mean]" info:)
    echo "$img 边缘检测值: $edge_value"
    
    # 比较边缘值,保留最大值对应的图片
    if (( $(echo "$edge_value > $max_edge_value" | bc -l) )); then
        max_edge_value=$edge_value
        sharpest_image=$img
    fi
done

# 输出最清晰的图片
echo "最清晰的图片是: $sharpest_image"

# 删除其他图片
for img in output_*.jpg; do
    if [ "$img" != "$sharpest_image" ]; then
        rm "$img"
    fi
done

# 将最清晰的图片重命名为 output.jpg
mv "$sharpest_image" /data/hikuser/handler_video_to_picture/output.jpg

echo "已删除其他图片,保留最清晰的图片: $sharpest_image"

脚本执行效果示例:

所以截取的图片大小因为数据源是一个静态视频, 当然如果采集帧率过快时也会出现这样的情况, 注意空值

create_directory.sh

判断文件夹是否存在存在则创建不存在则不处理

#!/bin/bash

# 检查是否提供了文件夹名称参数
if [ "$#" -ne 1 ]; then
    echo "Usage: ${0##*/} <directory_name>"
    exit 1
fi

# 文件夹名称
DIR_NAME="$1"

# 检查文件夹是否存在
if [ -d "$DIR_NAME" ]; then
    echo "Directory '$DIR_NAME' already exists."
else
    # 创建文件夹
    mkdir -p "$DIR_NAME"
    if [ $? -eq 0 ]; then
        echo "Directory '$DIR_NAME' has been created."
    else
        echo "Failed to create directory '$DIR_NAME'."
        exit 1
    fi
fi


http://www.kler.cn/a/302888.html

相关文章:

  • 用户中心项目教程(二)---umi3的使用出现的错误
  • 【视觉惯性SLAM:十七、ORB-SLAM3 中的跟踪流程】
  • tlias部门管理-新增部门-接口开发
  • ubuntu开机自启某个应用
  • 交直流混合微电网多台互联变换器并联
  • 深度学习在文本情感分析中的应用
  • 西门子1200/1500PLC什么时候需要设置网关地址
  • TCP全连接队列和tcpdump抓包
  • MinIO【部署 02】Linux集群版本及Windows单机版、单机多目录版、分布式版(cmd启动脚本及winsw脚本分享)
  • 模版方法模式template method
  • CMU 10423 Generative AI:lec3(Learning Large Language Models)
  • vim 安装与配置教程(详细教程)
  • Linux学习-Ansible(二)
  • 解码企业数字化转型的四大核心促因
  • 数据结构加餐:三路划分、自省排序、文件归并排序
  • vue3 使用swiper制作带缩略图的轮播图
  • 视频笔记1
  • Winform实现弹出定时框功能
  • HarmonyOS开发之(下拉刷新,上拉加载)控件pulltorefresh组件的使用
  • 汽车材料展︱2025 广州国际汽车轻量化技术及车用材料展览会
  • 用Qt 对接‌百度语音识别接口
  • 如何使用studio layout inspector
  • 工具、环境等其他小问题归纳
  • uniapp对tabbar封装,简单好用
  • Unity3d中制作触发区域为圆形的按钮
  • YOLOv5-6.x源码分析----数据集创建之dataloaders.py