当前位置: 首页 > article >正文

向量——通俗地解释

1. 向量

  向量是一个既有大小(模)又有方向的对象,它可以用来描述空间中的位置、力或速度等量。我们可以从物理、数学和计算机的角度来看待向量,这三种观点看似不同却有关联。
(1)在物理专业视角下,向量是空间中的箭头,决定一个向量的是它的长度(大小)和它所指的方向。处在平面中的向量是二维的,而处在我们所生活的空间中的向量是三维的。
(2)在计算机专业视角下,向量是有序的数字列表,例如二维向量 x = [ 1 , 2 ] \boldsymbol{x}=[1,2] x=[1,2]
(3)在数学专业视角下,向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘是有意义的即可。向量加法与向量数乘贯穿线性代数始终,二者起着很重要的作用。

2. 向量是有序的数字列表

(1)在二维空间中(X-Y平面),我们通常以原点(也就是坐标(0,0))作为起点,一个向量的坐标由"两个数"组成。而这"两个数"表示:如何从原点(向量起点)出发到达它的尖端(向量终点)。例如,二维向量 x = [ 2 , 4 ] \boldsymbol{x}=[2,4] x=[2,4],向量通常使用方括号([])括起来。对于二维向量 x = [ x 0 , y 0 ] \boldsymbol{x}=[x_0,y_0] x=[x0,y0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远。数 x 0 x_0 x0 y 0 y_0 y0的正负表示向量移动的方向,“正数” 表示向着"X-Y"的正半轴移动,“负数"表示向着"X-Y"的负半轴移动。每"一对数"给出唯一的一个二维向量,而每一个二维向量恰好对应唯一的"一对数”。

(2)在三维空间中(X-Y-Z)中,我们通常也以原点(也就是坐标(0,0,0))作为起点,每个向量由一对三元组构成,例如三维向量 x = [ 2 , 4 , 6 ] \boldsymbol{x}=[2,4,6] x=[2,4,6]。对于三维向量 x = [ x 0 , y 0 , z 0 ] \boldsymbol{x}=[x_0,y_0,z_0] x=[x0,y0,z0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远;第三个数 z 0 z_0 z0 表示向量沿着 Z Z Z 轴能走多远。每个"三元组"给出唯一的一个三维向量,而每个三维向量恰好对应唯一的"三元组"。

(3)当向量空间的维度超过三维时,我们直观上是想象不到的,但仍然可以使用数字来表示多维向量。例如:四维向量 x = [ 2 , 4 , 6 , 8 ] \boldsymbol{x}=[2,4,6,8] x=[2,4,6,8],六维向量 x = [ 2 , 4 , 6 , 8 , 10 , 12 ] \boldsymbol{x}=[2,4,6,8,10,12] x=[2,4,6,8,10,12]。由此可以得到 n n n 维向量 x \boldsymbol{x} x 的表示形式为: x = [ x 0 , x 1 , x 2 , … , x n ] \boldsymbol{x}=[x_0,x_1,x_2,\ldots ,x_n] x=[x0,x1,x2,,xn]

3. 通俗解释:向量加法与向量数乘

3.1 向量加法

(1)使用二维坐标系(X-Y)来解释向量的加法
  从下图一可以看出:向量 v = [ 1 , 2 ] \boldsymbol{v}=[1,2] v=[1,2],向量 w = [ 3 , − 1 ] \boldsymbol{w}=[3,-1] w=[3,1]

在这里插入图片描述

图1 二维向量 v 和 w

接下来我们对二维向量 v \boldsymbol{v} v w \boldsymbol{w} w 进行相加。具体而言,相加之后的向量就是从第一个向量出发,指向第二向量的终点,两个向量之和( v + w \boldsymbol{v}+\boldsymbol{w} v+w)的表示如下图2所示。由下图2可以看出 v + w = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[4,1] v+w=[4,1] ,而向量 v \boldsymbol{v} v w \boldsymbol{w} w按元素累加可得: [ 4 , 1 ] [4,1] [4,1],也就是说:向量的加法就是对应坐标位置的元素进行累加。

在这里插入图片描述

图2 向量加法

(2)向量加法的通俗解释
  我们可以把每个向量看成是一种特定的运动,即在空间中朝着一个方向迈出一定距离。对于上图2中的向量加法,我们先沿着第一个向量 v \boldsymbol{v} v 的方向进行运动,然后再按照第二个向量 w \boldsymbol{w} w 的方向进行移动。其实这两次的总体运动效果就等价于从原点出发,沿着向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w的方向进行运动。
  更通俗地来讲,你可以把向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w看成从原点出发,先向右走1步,再往上移动2步,接着往右移动3步,最后向下移动1步。或者也可以看作从原点出发,先向右走4步,再向上移动1步。这也就证明了: v + w = [ 1 , 2 ] + [ 3 , − 1 ] = [ 1 + 3 , 2 − 1 ] = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[1,2]+[3,-1]=[1+3,2-1]=[4,1] v+w=[1,2]+[3,1]=[1+3,21]=[4,1]

3.2 向量数乘

  假设 v = [ 3 , 1 ] \boldsymbol{v}=[3,1] v=[3,1],那么 2 v = [ 2 × 3 , 2 × 1 ] = [ 6 , 2 ] 2\boldsymbol{v}=[2×3,2×1]=[6,2] 2v=[2×3,2×1]=[6,2],如下图3所示。
在这里插入图片描述

图3 向量数乘1

由图3可知, 2 v 2\boldsymbol{v} 2v相当于把向量 v \boldsymbol{v} v 拉长为原来的2倍。如果是 1 3 v = [ 1 3 × 3 , 1 3 × 1 ] = [ 1 , 1 3 ] \frac{1}{3}\boldsymbol{v}=[\frac{1}{3}×3,\frac{1}{3}×1]=[1,\frac{1}{3}] 31v=[31×3,31×1]=[1,31],那么就相当于把向量 v \boldsymbol{v} v 缩短为原来的 1 3 \frac{1}{3} 31,如下图4所示。
在这里插入图片描述

图4 向量数乘2

当一个向量与一个负数相乘时,例如 − 1.8 v = [ − 1.8 × 3 , − 1.8 × 1 ] = [ − 5.4 , − 1.8 ] -1.8\boldsymbol{v}=[-1.8×3,-1.8×1]=[-5.4,-1.8] 1.8v=[1.8×3,1.8×1]=[5.4,1.8],表示首先这个向量 v \boldsymbol{v} v 先反向,然后伸长为原来的1.8倍,其运算结果如下图5所示。

在这里插入图片描述

图5 向量数乘3

上述的这种拉伸或者压缩,有时又使向量反向的过程被称为缩放。

4. 向量点乘(结果是一个数)

(1)几何表示: a ⋅ b = ∣ a ∣ × ∣ b ∣ × cos ⁡ θ \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}|×|\boldsymbol{b}|×\cos \theta ab=a×b×cosθ,其中 θ \theta θ 是向量 a \boldsymbol{a} a b \boldsymbol{b} b 的夹角, ∣ a ∣ |\boldsymbol{a}| a 是向量 a \boldsymbol{a} a的模(大小), ∣ b ∣ |\boldsymbol{b}| b 是向量 b \boldsymbol{b} b 的模(大小)。图形化描述如下所示,从下图可知,向量点乘通常用来描述一个向量在另一个向量的投影分量
在这里插入图片描述
(2)代数表示: a = ( a x , a y , a z ) \boldsymbol{a}=(a_x,a_y,a_z) a=(ax,ay,az) b = ( b x , b y , b z ) \boldsymbol{b}=(b_x,b_y,b_z) b=(bx,by,bz),则 a ⋅ b = a x b x + a y b y + a z b z \boldsymbol{a} \cdot \boldsymbol{b}=a_xb_x+a_yb_y+a_zb_z ab=axbx+ayby+azbz(向量内积,点乘)。

(3)例子: a = ( 1 , 1 ) \boldsymbol{a}=(1,1) a=(1,1) b = ( 1 , 0 ) \boldsymbol{b}=(1,0) b=(1,0),我们可以在二维坐标系(X-Y)上显示这两个向量,这两个向量之间的夹角为45°。因此: a ⋅ b = 2 × 1 × cos ⁡ 45 = 1 \boldsymbol{a} \cdot \boldsymbol{b}=\sqrt{2}×1×\cos45=1 ab=2 ×1×cos45=1,或者使用点积来表示: a ⋅ b = 1 × 1 + 1 × 0 = 1 \boldsymbol{a} \cdot \boldsymbol{b}=1×1+1×0=1 ab=1×1+1×0=1

参考:【熟肉】线性代数的本质 - 01 - 向量究竟是什么?
向量点乘的图形学意义


http://www.kler.cn/a/303081.html

相关文章:

  • 使用Matlab建立随机森林
  • 什么是RAG? LangChain的RAG实践!
  • xrandr源码分析
  • 51c视觉~合集6
  • 高性能分布式缓存Redis-高可用部署
  • 【大数据学习 | kafka高级部分】kafka的kraft集群
  • 网络编程(UDP)
  • 详解贪心算法
  • STM32 如何生成随机数
  • CentOS 7下CX5-RDMA网络测试
  • 6年前倒闭的机器人独角兽,再次杀入AGV市场
  • Vue3+TS项目封装一个公共的el-table组件二次封装
  • ADB 之 logcat 极简小抄(过滤日志、保存日志到文件)
  • C++复习day11
  • 基于人工智能的自动驾驶系统项目教学指南
  • 【C++】STL容器-string的遍历
  • Android10源码刷入Pixel2以及整合GMS
  • 【python】python中非对称加密算法RSA实现原理与应用实战
  • Linux的历史,版本,Linux的环境安装、简单学习4个基本的Linux指令、创建普通用户等的介绍
  • android kotlin 基础复习 继承 inherit
  • 用AI的智慧,传递感恩之心——GPT-4o助力教师节祝福
  • ClickHouse 的底层架构和原理
  • 【最新华为OD机试E卷-支持在线评测】通过软盘拷贝文件(200分)多语言题解-(Python/C/JavaScript/Java/Cpp)
  • 密码测评三级相关项理解
  • 7 递归——206. 反转链表 ★
  • 【Canvas与密铺】正六边形、正方形和正三角形的密铺