【python】OpenCV—Age and Gender Classification
文章目录
- 1、任务描述
- 2、网络结构
- 2.1 人脸检测
- 2.2 性别分类
- 2.3 年龄分类
- 3、代码实现
- 4、结果展示
- 5、参考
1、任务描述
性别分类和年龄分类预测
2、网络结构
2.1 人脸检测
输出最高的 200 个 RoI,每个 RoI 7 个值,(xx,xx,score,x0,y0,x1,y1)
2.2 性别分类
二分类
2.3 年龄分类
按年龄区间分类 ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
3、代码实现
先检测人脸,人脸外扩,再性别检测,再年龄检测,最后结果绘制输出
# Import required modules
import cv2 as cv
import math
import time
import argparse
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0] # 333
frameWidth = frameOpencvDnn.shape[1] # 500
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward() # (1, 1, 200, 7), (xxx, xxx, confidence, x0, y0, x1, y1)
bboxes = []
for i in range(detections.shape[2]): # 遍历 top 200 RoI
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
parser.add_argument('--input', help='Path to input image or video file. '
'Skip this argument to capture frames from a camera.',
default="jolie.jpg")
parser.add_argument("--device", default="cpu", help="Device to inference on")
args = parser.parse_args()
args = parser.parse_args()
faceProto = "opencv_face_detector.pbtxt"
faceModel = "opencv_face_detector_uint8.pb"
ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"
genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
if args.device == "cpu":
ageNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
genderNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
faceNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
print("Using CPU device")
elif args.device == "gpu":
ageNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
ageNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
print("Using GPU device")
# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
padding = 20
while cv.waitKey(1) < 0:
# Read frame
t = time.time()
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
frameFace, bboxes = getFaceBox(faceNet, frame) # (333, 500, 3), 4 bbox
if not bboxes:
print("No face Detected, Checking next frame")
continue
for bbox in bboxes: # 遍历检测出来的人脸
# print(bbox)
face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),
max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)] # 人脸外扩
blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
# array([[9.9999559e-01, 4.4012304e-06]], dtype=float32), 'Male'
# print("Gender Output : {}".format(genderPreds))
print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
ageNet.setInput(blob)
agePreds = ageNet.forward()
"""
array([[5.3957672e-05, 5.3967893e-02, 9.4579268e-01, 1.0875276e-04, 5.0436443e-05,
1.2142612e-05, 1.0151542e-05, 3.9845672e-06]],dtype=float32)
"""
age = ageList[agePreds[0].argmax()] # '(8-12)'
# print("Age Output : {}".format(agePreds))
# print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
label = "{},{}".format(gender, age) # Out[15]: 'Male,(8-12)'
cv.putText(frameFace, label, (bbox[0], bbox[1]-5), cv.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 2, cv.LINE_AA)
# cv.imshow("Age Gender Demo", frameFace)
cv.imwrite("age-gender-out-{}".format(args.input), frameFace)
print("time : {:.3f}".format(time.time() - t))
4、结果展示
输入图片
人脸检测结果
人脸外扩
输出结果
性别还是比较准的
输入图片
输出结果
输入图片
输出结果
输入图片
输出结果
输入图片
输出结果
5、参考
OpenCV进阶(8)性别和年龄识别