当前位置: 首页 > article >正文

大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:

  • 测试连接集群
  • 数据类型学习
  • 整型 浮点型 Decimal 等等

在这里插入图片描述

简单介绍

表引擎(即表的类型)决定了:

  • 数据的存储方式和位置,写到哪里以及从哪里读取数据
  • 支持哪些查询以及如何支持
  • 并发数据访问
  • 索引的使用(如果存在)
  • 是否可以执行多线程请求
  • 数据复制参数

ClickHouse 是一个列式数据库管理系统,支持多种表引擎,每种表引擎都有其特定的功能和用途。以下是一些常用的 ClickHouse 表引擎:

MergeTree 系列

  • MergeTree:最常用的表引擎,支持高效的分区、排序、索引等功能,适合处理大量写入和查询场景。支持主键和索引。
  • ReplicatedMergeTree:基于 MergeTree,但增加了复制功能,适用于分布式集群环境。
  • ReplacingMergeTree:允许以最新的记录覆盖旧的记录,对于需要根据特定列去重的场景非常适用。
  • SummingMergeTree:支持对数值列的聚合,适用于需要进行聚合计算的场景。
  • AggregatingMergeTree:支持更加复杂的聚合操作,适合需要预计算汇总的场景。
  • CollapsingMergeTree:用于处理日志式数据,通过将 “begin” 和 “end” 记录合并,以减少存储空间。
  • VersionedCollapsingMergeTree:在 CollapsingMergeTree 基础上,增加了版本号,用于更好地控制数据合并。

Log 系列

  • Log:简单的表引擎,不支持索引和分区,适合小数据量或日志式的存储场景。
  • TinyLog:适合嵌入式场景或测试,性能更简单,不能处理大规模数据。
  • StripeLog:适合 SSD 场景,按行写入,但会将数据按块组织,适合某些特定读写模式。
  • Memory:数据只存储在内存中,适用于需要快速读写但不需要持久化的场景。
  • Distributed:在分布式集群中使用,将查询分发到多个节点,适合大规模数据和高并发查询场景。
  • Merge:将多个表作为一个虚拟表进行查询,适合需要联合多个表进行读取的场景。
  • Join:预加载并存储 Join 表,用于提高连接操作的效率。

View 系列

  • MaterializedView:物化视图,允许通过预计算来加速查询。
  • View:普通视图,不会存储数据,只是查询的定义。
  • Buffer:将数据暂时存储在内存中,并定期批量写入到基础表中,适合需要优化写入性能的场景。
  • Null:将数据写入时直接丢弃,适合测试场景。

日志

TinyLog

最简单的表引擎,用于将数据存储在磁盘上,每列都存储在单独的压缩文件上,写入时,数据将附加到文件末尾。该引擎没有并发控制。

  • 如果同时从表中读取或者写入数据,则读取操作将抛出异常
  • 如果同时写入多个查询中的表,则数据将被破坏

这种表的引擎的典型用法 write-once:首先只写入一次数据,然后根据需要多次读取。此引擎适用于相对较小的表(建议最多1,000,000行)。如果有许多小表,则使用此表引擎是适合的,因为它需要打开的文件更少,当拥有大量小表时,可能会导致性能低下,不支持索引。

测试1

创建一个TinyLog引擎的表并插入一条数据

CREATE table t (a UInt16, b String) ENGINE = TinyLog;
INSERT INTO t (a, b) VALUES (1, 'abc');

运行结果如下所示:
在这里插入图片描述
此时我们去保存数据的目录下查看:

cd /var/lib/clickhouse/data/default/t
ls

运行结果如下图:
在这里插入图片描述
文件列表的解释:

  • a.bin 和 b.bin 是压缩过的对应列的数据
  • sizes.json 中记录了 每个 bin 的大小

Log

Log 与 TinyLog 不同的是,标记的小文件与列文件存在一起,这些标记写在每个数据块上,并且包含偏移量,这些偏移量指示从哪里开始读取文件以便跳过指定的行数。这使得可以在多个线程中读取表数据,对于并发数据访问,可以同时执行读取操作,而写入操作则阻塞读取和其他写入。
Log引擎不支持索引。
同样,如果写入表事变,则该表会被破坏,并且从该表中读取将会返回错误。Log引擎适合于临时数据,write-once表以及测试或演示目的。

StripeLog

该引擎属于日志引擎系列,在你需要写入许多小数据量(小于100百万行)的表的场景下使用这个引擎。

写数据

StripeLog引擎将所有的列存储在一个文件中,对每一个INSERT请求,ClickHouse将数据块追加在表文件的末尾,逐列写入。
ClickHouse为每张表写入如下文件:

  • data.bin 数据文件
  • index.mrk 标记文件,标记包含了已插入的每个数据块中每列的偏移量。

StripeLog引擎不支持 ALTER、UPDATE、ALTER DELETE操作。

读数据

带标记文件使得ClickHouse可以并行的读取数据,这意味着SELECT请求返回行的顺序是不可预测的,使用ORDER BY子句对行进行排练。

新增表

CREATE TABLE stripe_log_table (
  timestamp DateTime,
  message_type String,
  message String
) ENGINE = StripeLog;

执行结果如下图所示:
在这里插入图片描述

插入数据

INSERT INTO stripe_log_table VALUES (now(), 'REGULAR', 'The first reqular message');
INSERT INTO stripe_log_table VALUES 
(now(), 'REGULAR', 'The second regular message'),
(now(), 'WARNING', 'The first warning message');

我们使用两次 INSERT 请求从而在 data.bin 文件中创建两个数据块。
在这里插入图片描述

查询数据

ClickHouse 在查询数据时使用多线程,每个线程读取单独的数据并在完成后独立的返回结果行,这样的结果是,大多数情况下,输出中的块的顺序和输入时相应块的顺序是不同的,例如:

SELECT * FROM stripe_log_table;
# 对结果排序(默认增序)
SELECT * FROM stripe_log_table ORDER BY timestamp;

执行的结果如下图:
在这里插入图片描述

Memory

内存引擎,数据以未压缩的原始形式直接保存在内存中,服务器重启数据就会丢失。
读写操作不会互相阻塞,不支持索引。
简单查询下有非常高的性能表现:超过10G/s
一般用到的地方不多,除了用来测试,就是需要非常高的性能,但是数据量又不能太大(上限大概1亿行)的场景。

Merge

Merge引擎(不要与MergeTree搞混)本身不存储数据,但可以用于同时从任意多个其他的表中读取数据,读是自动并行的,不支持写入。
读取时,那些被真正读取到数据的表的引擎(如果有的话)会被使用。

Merge参数:

  • 数据库名
  • 匹配表名的正则表达式

创建新标

CREATE table t1 (id UInt16, name String) ENGINE = TinyLog;
CREATE table t2 (id UInt16, name String) ENGINE = TinyLog;
CREATE table t3 (id UInt16, name String) ENGINE = TinyLog;

执行结果如下图所示:
在这里插入图片描述

插入数据

INSERT INTO t1 (id, name) VALUES (1, 'first');
INSERT INTO t2 (id, name) VALUES (2, 'second');
INSERT INTO t3 (id, name) VALUES (3, 'i am in t3');

执行结果如下图:
在这里插入图片描述

建立链接

CREATE TABLE t (id UInt16, name String) ENGINE = Merge(currentDatabase(), '^t');

执行结果如下图所示:
在这里插入图片描述


http://www.kler.cn/a/305878.html

相关文章:

  • 提升汽车金融租赁系统的效率与风险管理策略探讨
  • Docker新手:在tencent云上实现Python服务打包到容器
  • 【项目开发】C#环境配置及VScode运行C#教程(学生管理系统)
  • 矩阵简单问题(Java)
  • 26.Java Lock 接口(synchronized 关键字回顾、可重入锁快速入门、Lock 对比 synchronized)
  • pytorch镜像源
  • windows 安全与网络管理问题
  • 【人工智能学习笔记】6_自然语言处理基础
  • 借老系统重构我准备写个迷你版apiFox
  • <Linux> 进程间通信
  • 医疗机构关于DIP/DRG信息化建设
  • 【linux】cat 命令
  • 什么是MIPI接口?MIPI相机是如何工作的?
  • 算法_优先级队列---持续更新
  • mysql组合键唯一
  • HTTP 四、HttpClient的使用
  • 一文带你全面了解RAID技术:从基础到进阶的全景解析
  • 大厂硬件梦:字节、腾讯“向首”,华为、小米“向手”
  • 设计模式之建造者模式(通俗易懂--代码辅助理解【Java版】)
  • MSYS vs MSYS2:功能、兼容性与易用性全面比拼,助你挑选最佳Windows开发伴侣
  • SpringBoot集成Thymeleaf模板引擎,为什么使用(详细介绍)
  • 【CSS in Depth 2 精译_031】5.3 Grid 网格布局的两种替代语法
  • TCP Analysis Flags 之 TCP ZeroWindow
  • 【机器学习】7 ——k近邻算法
  • npm install报错,gyp verb `which` failed Error: not found: python
  • 第十六节:学习Springboot 的自定义资源路径(自学Spring boot 3.x的第四天)