当前位置: 首页 > article >正文

C++初阶学习——探索STL奥秘——vector的模拟实现

vector的结构比较特殊,成员变量为三个指针

#pragma once
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

#include <string>
using std::string;

namespace Yohifo
{
	template<class T>
	class vector
	{
	public:
		typedef T value_type;
		typedef value_type* pointer;	//指针
		typedef const value_type* const_pointer;
		typedef value_type* iterator;	//迭代器
		typedef const value_type* const_iterator;
		typedef value_type& reference;	//引用
		typedef const value_type& const_reference;
		
	private:
		iterator _start;	//指向起始位置
		iterator _finish;	//指向有效元素的下一个位置
		iterator _end_of_storage;	//指向可用空间的下一个位置
	};
}

 

1、默认成员函数

默认成员函数需要自己设计,因为涉及深浅拷贝问题

//默认构造
vector() :_start(nullptr), _finish(nullptr), _end_of_storage(nullptr) {}

//带参构造
vector(size_t n, const T& value = T())
	:vector()
{
	reserve(n);	//扩容
	while (n--) push_back(value);	//逐个尾插
}
//额外版本,避免匹配上迭代器区间构造
vector(int n, const T& value = T())
	:vector()
{
	reserve(n);	//扩容
	while (n--) push_back(value);	//逐个尾插
}

//迭代器区间构造
template<class InputIterator>
vector(InputIterator first, InputIterator last)
	:vector()
{
	//考虑提前计算容量
	InputIterator cur = first;
	int len = 0;
	while (cur != last) ++len, ++cur;
	reserve(len);
	while (first != last) push_back(*first), ++first;
}

注意:

 在设计带参构造函数时,需要再额外提供一个vector(int b,const T& value=T())版本

以防使用vector<int>v(10,6)(构造对象,内容为10个6)优先匹配上迭代器构造,此时会造成非法简介寻址错误

此时多处用到了匿名对象作为缺省值

vector(size_t n, const T& value = T());
vector(int n, const T& value = T());

带参构造、拷贝构造、迭代器区间构造等函数创建新对象前,需要先初始化,有多种初始化方法:

1.在定义成员变量后设置缺省值

2.在创建新对象前手动进行初始化(初

始化列表)

3.d调用默认构造进行初始化

这里采用的是初始化列表调用默认构造函数初始化的方式

匿名对象调用默认构造就是需要写T(),如果匿名对象的无参构造需要写成T(),要是直接写成T,就会被当做是类型T,会出现语法报错

1.2拷贝构造

//拷贝构造-传统写法
vector(const vector<T>& v)
	:vector()
{
	reserve(v.capacity());	//扩容
	size_t pos = 0;
	while (pos < v.size()) 
    *(_start + pos) = *(v.begin() + pos), ++pos;
	_finish = begin() + v.size();
}
拷贝构造-现代写法
//vector(const vector<T>& v)
//	:vector()
//{
//	vector<T> tmp(v.begin(), v.end());	//构造临时对象
//	swap(tmp);	//直接交换
//}

拷贝构造对象前可以 先进行扩容,避免空间浪费; 采用逐个数据赋值拷贝的方式进行拷贝,因为有可能是自定义类型,逐个赋值可以避免浅拷贝问题


比如 T为 string 类型,实际调用时是这样的 this[pos]= v[pos](string 对象,调用对应的赋值
重载函数)


注意: vector 的拷贝构造函数必须自己写,默认生成的是浅拷贝


现代写法着重交换思想,利用选代器区间构造出临时对象,再将临时对象“交换”给当前对象即可
这种方式有点窃取劳动成果的感觉-

1.3赋值重载

//赋值重载-传统写法
vector<T>& operator=(const vector<T>& v)
{
	if (this != &v)
	{
		reserve(v.capacity());	//扩容
		size_t pos = 0;
		while (pos < v.size())
         *(_start + pos) = *(v.begin() + pos), ++pos;
		_finish = begin() + v.size();
	}

	return *this;
}
赋值重载-现代写法
void swap(vector<T>& v)
{
	//交换三个内置类型,效率要高得多
	//std::swap(_start, v._start);
	//std::swap(_finish, v._finish);
	//std::swap(_end_of_storage, v._end_of_storage);
//}
//vector<T>& operator=(vector<T> tmp)
//{
//	swap(tmp);

//	return *this;
//}

赋值重载的传统写法与拷贝构造基本一致,赋值重载中不需要新建对象,因为是“赋值”。注意: 赋值前,可以先判断两个对象是否为同一个,如果是,则不需要进行操作

1.4构析函数

//析构函数
~vector()
{
	delete[] _start;
	_start = _finish = _end_of_storage = nullptr;
}

start 指向已开辟空间的首位置,可以直接进行空间释放


注意:空间申请时,使用的是 new[],因此释放时需要使用 delete []


1.5经典问题:深度拷贝


众多构造函数都离不开空间调整函数 reserve ,所以这里提前进行学习,并且 reserve 在实现时会出现一个经典问题:深浅拷贝

void reserve(size_t n)
{
	if (n > capacity())
	{
		size_t sz = size();	//需要先保存 _start 与 _finish 间的距离
		pointer tmp = new value_type[n];	//开辟新空间
		if (begin())
		{
			//memcpy(tmp, begin(), size() * sizeof(T));	//不能直接移动
			size_t pos = 0;
			while (pos < sz)
			{
				//调用自定义类型的赋值重载函数,完成深拷贝
				*(tmp + pos) = *(begin() + pos);	//深拷贝
				pos++;
			}
			delete[] begin();	//释放原空间
		}

		_start = tmp;	//赋值新空间
		_finish = _start + sz;
		_end_of_storage = _start + n;
	}
}

函数执行步骤:


判断 n是否大于容量,大于才需要进行扩容


保存有效元素数(大小),后面有用


三步走:开辟新空间 ->移动元素至新空间 ->释放旧空间,更改指向


注意: 在将旧空间中的数据移动至新空间时,不能直接通过 memcpy/memmove 的方式进行数据移动,因为这些库函数都是浅拷贝,使用后会造成重复析构问题


举例:使用 memcpy 进行数据迁移

 

 

 

 实际上,拷贝构造、赋值重载、reserve 都需考虑深度拷贝的问题

一句话总结:对于自定义类型来说,在进行拷贝/赋值等操作时,调用对应的赋值重载函数即可


reserve 扩容时,发生了这些事情:

2.迭代器 

 vector的迭代器就是原生指针

typedef T value_type;
typedef value_type* iterator;	//迭代器
typedef const value_type* const_iterator;
		
//=====迭代器设计=====
iterator begin() { return _start; }
iterator end() { return _finish; }

const_iterator begin() const { return _start; }
const_iterator end() const { return _finish; }

3、容量

3.1查看容量

//=====容量相关=====
size_t size() const { return end() - begin();  }
size_t capacity() const { return _end_of_storage - begin();  }
bool empty() const { return begin() == end();  }

3.2、容量调整


可以调整容量( reserve ),也可以调整大小( resize)
reserve 前面已经介绍过了,这里来看看resize 

void resize(size_t n, const_reference val = value_type())
{
	if (n < size())
		erase(begin() + n, end());
	else
		insert(end(), n - size(), val);
}

操作步骤:


判断 n是否大于大小
如果小于,执行删除,区间为[begin()+n,end()]
如果小于或等于,就执行插入,区间为[end(),n-size(),val]


value_type 就是 T,缺省值为默认对象值

4、数据访问

4.1下标访问

有两种方式,分别是[]和at

//=====数据访问=====
reference operator[](size_t pos)
{
	assert(pos >= 0 && pos < size());
	return *(begin() + pos);
}
const_reference operator[](size_t pos) const
{
	assert(pos >= 0 && pos < size());
	return *(begin() + pos);
}

reference at(size_t pos) { return (*this)[pos]; }
const_reference at(size_t pos) const { return (*this)[pos]; }

4.2队尾元素

reference front() { return (*this)[0]; }
const_reference front() const { return (*this)[0]; }
reference back() { return (*this)[size() - 1]; }
const_reference back() const { return (*this)[size() - 1]; }

5.修改 

5.1首尾删减

void push_back(value_type val)
{
	if (size() == capacity())
		reserve(capacity() == 0 ? 4 : capacity() * 2);	//考虑容量为0的情况

	*_finish++ = val;	//在最后一个位置插入
}

void pop_back() 
{
	assert(!empty());
	--_finish;
}

关于尾插,还有一个类似的拼接函数 assign ,将某段区间或个 val 值,拼接至对象后面 

//=====数据修改=====
template <class InputIterator>
void assign(InputIterator first, InputIterator last)
{
	//迭代器区间拼接
	InputIterator cur = first;
	int len = 0;
	while (cur != last) ++len, ++cur;
	reserve(len);
	while (first != last) push_back(*first), ++first;
}
void assign(int n, const value_type& val)
{
	reserve(n);	//提前扩容
	while (n--) push_back(val);
}

5.2任意位置增删

iterator insert(iterator pos, const_reference val)
{
	//先记录当前迭代器的位置
	size_t sz = pos - begin();
	if (size() == capacity())
		reserve(capacity() == 0 ? 4 : capacity() * 2);	//考虑容量为0的情况

	pos = begin() + sz;	//更新迭代器
	iterator cur = end();
	while (cur != pos) *cur = *(cur - 1), --cur;
	*cur = val;	//插入数据
	++_finish;	//尾向后移动

	return pos;	//返回新迭代器位置
}
iterator insert(iterator pos, size_t n, const_reference val)
{
	while (n--) pos = insert(pos, val), pos++;	//正确写法

	return pos;
}

iterator erase(iterator pos)
{
	assert(pos >= begin() && pos < end());
	iterator cur = pos;
	while (pos != end()) *pos = *(pos + 1), ++pos;
	--_finish;
	return cur;
}
iterator erase(iterator first, iterator last)
{
	//迭代器区间删除
	//两个结束条件:last == _finish
	//while (last != _finish) *first = *(last + 1), ++first, ++last;	//错误写法
	while (last != _finish) *first = *last, ++first, ++last;	//正确写法
	_finish = first;
	return _finish;
}

迭代器区间删除时,区间为左闭右开,在进行数据覆盖时,需要写成 *first = *last 而非 *first = *(last + 1),这样会导致删除出现问题

5.3迭代器失效

insert可能会导致迭代器失效

这是因为当插入数据需要扩容时,返回的pos位置还是原来的那块地址,但是扩容后插入的位置已经发生了变化,所以会导致迭代器失效。

为了解决这个问题,迭代器要返回插入后的位置

 


http://www.kler.cn/a/306470.html

相关文章:

  • PNG图片批量压缩exe工具+功能纯净+不改变原始尺寸
  • Java面向对象高级2
  • apache2配置多站点
  • Android Framework AMS(16)进程管理
  • 使用 start-local 脚本在本地运行 Elasticsearch
  • 阿里巴巴通义灵码推出Lingma SWE-GPT:开源模型的性能新标杆
  • 20Kg载重30分钟续航多旋翼无人机技术详解
  • 微服务下功能权限与数据权限的设计与实现
  • 差分进化算法(DE算法)求解实例---旅行商问题 (TSP)
  • C语言自定义类型-联合与枚举
  • 无人机视角下落水救援检测数据集
  • Vue学习:props验证的一个小细节“Prop 名字格式”
  • 本专题大纲
  • golang学习笔记16——golang部署与运维全攻略
  • Java高级Day42-Class类
  • Linux——应用层自定义协议与序列化
  • docker 学习笔记
  • 【详细原理】蒙特卡洛树搜索
  • 财富通公司开发洗车小程序有哪些用处?
  • 通过load->model()加载数据模型:在爬虫中实现动态数据处理
  • MySQL 变量查询如何使用索引
  • 用户体验在网站建设中的重要性
  • 下载chromedriver驱动
  • CesiumJS+SuperMap3D.js混用实现可视域分析 S3M图层加载 裁剪区域绘制
  • EmguCV学习笔记 VB.Net 11.5 目标检测
  • 浪潮信息首推3秒智能控温!告别服务器开机噪音