当前位置: 首页 > article >正文

【算法】滑动窗口—最小覆盖子串

题目

         ”最小覆盖子串“问题,难度为Hard,题目如下:

        给你两个字符串 S 和 T,请你在 S 中找到包含 T 中全部字母的最短子串。如果 S 中没有这样一个子串,则算法返回空串,如果存在这样一个子串,则可以认为答案是唯一的。

        比如输入 S = "ADBECFEBANC",T = "ABC",算法应该返回 "BANC"。

        如果我们使用暴力解法,代码大概是这样的:

        for (int i = 0; i < s.size; i++) {

                for (int j = i + 1; j < s.size; j++) {

                        if [i : j] 包含 t 的所有字母:

                                更新答案

                }

        }

        思路很简单,但显然不是我们想要的。

滑动窗口思路分析

        1.我们在字符串 S 中使用双指针中的左、右指针技巧,初始化 left = right = 0,把索引左闭右开区间 [left, right) 称为一个”窗口“。

        2.先不断地增加 right 指针扩大窗口 [left, right),直到窗口中的字符串符合要求(包含了 T 中的所有字符)。

        3.此时,停止增加 right,转而不断增加 left 指针缩小窗口 [left, right),直到窗口中的字符串不再符合要求(不包含 T 中所有字符了)。同时,每次增加 left,都要更新一轮结果。

        4.重复第2和第3步,直到 right 到达字符 S 的尽头。

        第2步相当于在寻找一个”可行解“,然后第3步在优化这个”可行解“,最终找到最优解,也就是最短的覆盖子串。左、右指针轮流前进 ,窗口大小增增减减,窗口不断向右滑动,这就是”滑动窗口“这个名字的来历。

        下面画图理解一下这个思路。needs 和 window 相当于计数器,分别记录 T 中字符出现次数和”窗口“中的相应字符的出现次数。

        初始状态:

a2a6f4fbc2554d7388c9120dc1ef8546.png

        增加 right,直到窗口 [left, right) 包含了 T 中所有字符:

ac2a978709634b9e90beb1d1fcd7b4ca.png

        现在开始增加 left,缩小窗口 [left, right):

79ce1706f6074f41bed6491fa30752e4.png

        直到窗口中的字符串不再符合要求,left 不再继续移动:

724c5c8420884e56af1c8aff2d98f2e6.png

        之后重复上述过程,先移动 right,再移动 left······直到 right 指针到达字符串 S 的末端,算法结束。现在来看看滑动窗口代码框架怎么用。

        首先,初始化 window 和 need 两个哈希表,记录窗口中的字符和需要凑齐的字符:

        Map<Character, Integer> need = new HashMap<>();
        Map<Character, Integer> window = new HashMap<>();
        for (int i = 0; i < t.length(); i++) {
            char key = t.charAt(i);
            need.put(key, need.getOrDefault(key, 0) + 1);
        }

        然后,使用 left 和 right 变量初始化窗口的两端,不要忘了,区间 [left, right) 是左闭右开的,所以初始情况下窗口没有包含任何元素:

        int left = 0, right = 0, valid = 0;
        while (right < s.length()) { // 开始滑动 }

        其中,valid 变量表示窗口中满足 need 条件的字符个数,如果 valid 和 need.size 的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T。

        现在开始套模板,只需要思考以下4个问题:

        1.当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

        2.什么条件下,窗口应该暂停扩大,开始移动 left 缩小窗口?

        3.当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

        4.我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

        一般来说,如果一个字符进入窗口,应该增加 window 计数器;如果一个字符移出窗口,应该减少 window 计数器;当 valid 满足 need 时应该收缩窗口;收缩窗口的时候应该更新最终结果。

        下面是完整代码:

package SlidingWindow;

import java.util.HashMap;
import java.util.Map;

// leetcode 017 最小覆盖子串
public class MCS {

    public String slidingWindow(String s, String t) {
        Map<Character, Integer> need = new HashMap<>();
        Map<Character, Integer> window = new HashMap<>();
        for (int i = 0; i < t.length(); i++) {
            char key = t.charAt(i);
            need.put(key, need.getOrDefault(key, 0) + 1);
        }
        int left = 0, right = 0, valid = 0; // valid 表示窗口中满足 need 条件的字符个数
        // 记录最小覆盖子串的启始索引及长度
        int start = 0, len = Integer.MAX_VALUE;
        while (right < s.length()) {
            // c 是将要移入窗口的字符
            char c = s.charAt(right);
            // 右移窗口
            right++;
            // 进行窗口内数据的一系列更新
            if (need.containsKey(c)) {
                window.put(c, window.getOrDefault(c, 0) + 1);
                if (window.getOrDefault(c, 0).equals(need.getOrDefault(c, 0))) { // window[c] == need[c]
                    valid++;
                }
            }

            /*** debug 输出的位置***/
            System.out.println("window:(" + left + ", " + right + ")");
            /*********************/

            // 判断左侧窗口是否要收缩
            while (valid == need.size()) { // window need shrink —窗口需要收缩
                // 在这里更新最小覆盖子串
                if (right - left < len) {
                    start = left;
                    len = right - left;
                }
                // d 是将要移出窗口的字符
                char d = s.charAt(left);
                // 左移窗口
                left++;
                // 进行窗口内数据的一系列更新
                if (need.containsKey(d)) {
                    if (window.getOrDefault(d, 0).equals(need.getOrDefault(d, 0))) {
                        valid--;
                    }
                    window.put(d, window.getOrDefault(d, 0) - 1);
                }
            }
        }
        // 返回最小覆盖子串
        return len == Integer.MAX_VALUE ? "" : s.substring(start, start + len); // s.substring(start, start + len) == C++ 中的 s.substr(start, len)
    }

    public static void main(String[] args) {
        MCS mcs = new MCS();
        String str = mcs.slidingWindow("ADOBECODEBANC", "ABC");
        System.out.println(str);
    }
    
}


http://www.kler.cn/a/308144.html

相关文章:

  • 基于海思soc的智能产品开发(两个图像处理来源)
  • 传奇996_21——龙岭事件
  • WordPress HTTPS 配置问题解决方案
  • C++ 的协程
  • 性能测试|JMeter接口与性能测试项目
  • ima.copilot-腾讯智能工作台
  • MyBatis的配置文件详解
  • druid jdbc 执行 sql 输出 开销耗时
  • Linux下抓包分析Java应用程序HTTP接口调用:基于tcpdump与Wireshark的综合示例
  • 秒验HarmonyOS NEXT集成指南
  • ERP进销存管理系统的业务全流程 Axure高保真原型源文件分享
  • 仪表盘检测系统源码分享
  • Ubuntu 20.04 部署 NET8 Web - Systemd 的方式 达到外网访问的目的
  • 【运维监控】influxdb 2.0 + grafana 11 监控jmeter 5.6.3 性能指标(2)
  • Git进阶(十五):Git LFS 使用详解
  • Leetcode—740. 删除并获得点数【中等】(unordered_map+set+sort)
  • python提取pdf表格到excel:拆分、提取、合并
  • LLM - 理解 多模态大语言模型 (MLLM) 的预训练与相关技术 (三)
  • S-Procedure的基本形式及使用
  • 补题篇--codeforces
  • 安卓将本地日志上传到服务器
  • C语言 | Leetcode C语言题解之题409题最长回文串
  • 深入理解Appium定位策略与元素交互
  • 使用原生HTML的drag实现元素的拖拽
  • Linux C execv/execl函数调用 bash -c
  • 【疑难杂症2024-005】docker-compose中设置容器的ip为固定ip后,服务无法启动