当前位置: 首页 > article >正文

C++11新增特性:lambda表达式、function包装器、bind绑定

一、lambda表达式

1)、为啥需要引入lambda?

 在c++98中,我们使用sort对一段自定义类型进行排序的时候,每次都需要传一个仿函数,即手写一个完整的类。甚至有时需要同时实现排升序和降序,就需要各自手写一个类,非常不方便!所以C++11引入了lambda表达式!
lamaba是一个匿名函数对象,是一个可调用对象,表达式本质上也是一个类(vs中类名为lambda_uuid),并实现了operator()。

【C98玩法】:

struct Goods
{
	string _name;  // 名字
	double _price; // 价格
	int _evaluate; // 评价
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};
struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};
struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, 
						{ "橙子", 2.2, 3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), ComparePriceLess());
	sort(v.begin(), v.end(), ComparePriceGreater());
}

【C++11 lambda表达式】:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, 
						{ "橙子", 2.2, 3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price < g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });
}

2)、lambda表达式语法

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }

  • capture-list(捕捉列表):编译器根据[ ]来判断接下来的代码是否为lambda函数,[ ]可以捕捉父作用域的变量供lambda函数使用。
  • parameters(列表参数):和普通函数列表参数一样。如果没用,可以连同()一起省略。
  • mutable 默认情况下lambda是一个const函数(实际上是用于修饰operator()的),mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • return-type:用于声明返回值类型。如果没用返回值可以省略;即使有返回值也可以省略,由编译器自动推导!
  • statement 函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。

3)、capture-list(捕捉列表)细节

 捕捉列表用于捕捉父作用域中变量供lambda函数使用,捕捉方分为以下几种:

  1. [var]:表示值传递方式捕捉变量var。
  2. [=]:表示传值方式捕捉父作用域中的所有变量(包括this)。
  3. [&var]:表示引用传递方式捕捉变量var。
  4. [&]:表示引用方式捕捉父作用域中的所有变量(包括this)。
  5. [this]:表示值传递方式捕捉当前的this指针

 除此之外,捕捉列表可以由多个捕捉项组成,以逗号分割。比如:

     [=, &a, &b]:除引用捕捉a、b外,其他父作用域变量传值捕捉!
     [&, a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量。

 并且捕捉列表不能重复变量传递,否则会导致编译错误。比如:[=, a]:a变量传递了两次。lambda表达式之间不能相互赋值,即使类型相同,但编译后类名都变为了lambda_uuid),类名不相同!

4)、函数对象与lambda表达式

 函数对象又称仿函数,既可以像普通函数一样使用(在类中重载operator())。而lambda本质上一个一个函数对象,在编译后会转化成一个仿函数,并对operator()进行重载!

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};

int main()
{
	// 函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);

	// lamber
	auto r2 = [=](double monty, int year)->double {
		return monty * rate * year;
	};
	r2(10000, 2);
	return 0;
}

【反汇编结果】:
在这里插入图片描述

二、function包装器

1)、包装器由来

 function包装器 也叫作适配器,包装的是可调用对象。C++中的function本质是一个类模板,也是一个包装器。
在C++中有3种可调用对象:函数指针、仿函数、lambda!但我们发现想要获得他们的都存在一些缺陷:函数指针非常麻烦,类型和对象嵌在一起;仿函数很重,即使是一个很简单的比较逻辑也要在外面定义一个类;lambda没法写类型,不同的机器和时间uuid不同,并且相对匿名(当然decltype可以获的)

除此在外,众多的可调用对象类型会导致模板的效率低下! 原因在于假设现在存在一个函数模板,我需要将一个可调用对象作为模板参数进行传递来达到某种目的。但众多的可调用对象可能实现的是同一个功能,但分别传递给模板后需要实例化3份,导致模板效率降低!!所以包装器对可调用对象进行了统一!

【实例】:

template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{ 
	// 函数名
	cout << useF(f, 11.11) << endl;
	// 函数对象
	cout << useF(Functor(), 11.11) << endl;
	// lamber表达式
	cout << useF([](double d){ return d / 4; }, 11.11) << endl;
	return 0;
}

2)、包装器原型

std::function在头文件<functional>
// 类模板原型如下
template <class T> function;     // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;
模板参数说明:
Ret: 被调用函数的返回类型
Args…:被调用函数的形参

即现在存在一个包装器为:function<int(int, int)>,该包装器将所有的参数为2个int,返回值为int的所有可调用对象进行统一,认为是一个类型!!

3)、使用

template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};

int main()
{
	// 函数名
	std::function<double(double)> func1 = f;
	cout << useF(func1, 11.11) << endl;
	// 函数对象
	std::function<double(double)> func2 = Functor();
	cout << useF(func2, 11.11) << endl;
	// lamber表达式
	std::function<double(double)> func3 = [](double d){
		return d;
	 };
	cout << useF(func3, 11.11) << endl;
	return 0;
}

4)、面试题

150. 逆波兰表达式求值
在这里插入图片描述

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        unordered_map<string, function<int(int, int)>> ophash = {
            {"+", [](int x, int y){return x + y;}},
            {"-", [](int x, int y){return x - y;}},
            {"*", [](int x, int y){return x * y;}},
            {"/", [](int x, int y){return x / y;}}
        };

        stack<int> st;
        for(auto str : tokens)
        {
            if(ophash .find(str) != ophash .end())
            {
                int right = st.top(); st.pop();
                int left = st.top(); st.pop();
                st.push(ophash [str](left, right));
            }
            else
                st.push(stoi(str));
        }
        return st.top();
    }
};

三、bind绑定

bind也是一个函数模板,可以接收一个可调用对象,并返回一个新的可调用对象,用于调整参数的个数和顺序!!

// 原型如下:
template <class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
// with return type (2) 
template <class Ret, class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);

 调用bind的一般形式:auto newCallable = bind(callable,arg_list);其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数。
 arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推。

1)普通绑定用法

【实例】:

int Sub(int a, int b)
{
	return a - b;
}

int main()
{
	std::function<int(int, int)> func1 = std::bind(Plus, 
										 std::placeholders::_1, std::placeholders::_2);
	std::cout << func1(10, 2) << std::endl;
}

g.cn/direct/08ddd54d0cc649cba0b6d963bd07d864.png)

 bind函数中,_1和_2都是占位符。当执行func1(10, 2)函数时,参数10和2会被作为参数传递给Plus函数。其中std::placeholders::_1表示func1第一个参数的位置, std::placeholders::_2表示第二个参数所在位置!

2)、改变参数位置

 既然_1和_2是占位符,所以仅需改变两者位置,所以func函数传递给Plus的参数即可转换。具体结果如下:

int Sub(int a, int b)
{
	return a - b;
}

int main()
{
	std::function<int(int, int)> func1 = std::bind(Sub, 
										 std::placeholders::_2, std::placeholders::_1);
	std::cout << func1(10, 2) << std::endl;
}

在这里插入图片描述

3)改变参数的个数

 我们在类外调用一个类成员函数,调用成员函数时第一个参数为该对象的指针。但每次我们手动传递的时候非常麻烦。所以我们可以通过bind()将第一个参数进行绑死,改变参数个数。具体如下:

class Plus
{
public:
	static int Plusi(int x, int y)
	{
		return x + y;
	}

	double Plusd(double x, double y)
	{
		return x + y;
	}
};
int main()
{
	Plus ps;
	
	// 正常情况下,第一个参数this指针需要手动传递, 麻烦
	std::function<double(Plus*, double, double)> func1 = &Plus::Plusd;
	std::cout << func1(&ps, 10.1, 20.2) << std::endl;

	// 将第一个参数绑死为Plus*, 
	std::function<double(double, double)> func2 = std::bind(&Plus::Plusd,
	 									&ps, std::placeholders::_1, std::placeholders::_2);
	std::cout << func2(10.1, 20.2) << std::endl;

	// 将第一个参数和第三个参数绑死
	std::function<double(double)> func3 = std::bind(&Plus::Plusd, 
													&ps, std::placeholders::_1, 1.1);
	std::cout << func3(10.1) << std::endl;
	
	// 所有参数直接全部绑死, 注意此处博主绑定的是静态函数
	auto func4 = std::bind(&Plus::Plusi, 10, 10);
	std::cout << func4() << std::endl;
	
	//绑定时,第一个参数因为指针,但编译器做了特殊处理,可以绑定临时对象
	std::function<double(double, double)> func5 = std::bind(&Plus::Plusd, 
									Plus(), std::placeholders::_1, std::placeholders::_2);
	std::cout << func5(1.1, 2.2) << std::endl;
}

在这里插入图片描述


http://www.kler.cn/news/308326.html

相关文章:

  • 在Windows系统中管理苹果磁盘实用工具-使用磁盘,读取磁盘中的文件-供大家学习研究参考
  • 深入解析代理模式:静态代理、JDK 动态代理和 CGLIB 的全方位对比!
  • 开源模型应用落地-qwen模型小试-调用Qwen2-VL-7B-Instruct-更清晰地看世界(一)
  • 魔方财务安装指南
  • Qt6编译达梦8数据库驱动插件
  • 92、K8s之ingress下集
  • 遍历指定的目录a中的所有子目录及所有文件os.walk(root_dir)
  • Java进阶13讲__补充2/2
  • 初始爬虫6
  • PostgreSQL15.x安装教程
  • Vert.x初探
  • react native(expo)选择图片/视频并上传阿里云oss
  • Java数据存储结构——二叉查找树
  • 在linux注册服务并开机启动springboot程序
  • 使用canal.deployer-1.1.7和canal.adapter-1.1.7实现mysql数据同步
  • 探索轻量级语言模型 GPT-4O-mini 的无限可能
  • 面试常见题之PG数据库
  • 【工作流集成】springboot+vue工作流审批系统(实际源码)
  • 大数据之spark算子简介
  • SSM 框架 个人使用习惯 详细
  • vue3 + vite2 vue 打包后router-view空白
  • 用最新方案为数据密集型AI供能:将服务器农场沉入旧金山湾
  • 【YashanDB知识库】数据库获取时间和服务器时间不一致
  • Facebook的虚拟现实功能简介:社交网络的新前沿
  • 腾讯地图SDK Android版开发 11 覆盖物示例 4 线
  • 什么是蜘蛛池?有什么作用
  • 【原创】java+swing+mysql长途客车售票管理系统设计与实现
  • CACTI 0.8.7 迁移并升级到 1.2.7记录
  • 【零散技术】详解Odoo17邮件发送(一)
  • Unity 编辑器设置中文