当前位置: 首页 > article >正文

LLM大模型基础知识学习总结,零基础入门到精通 非常详细收藏我这一篇就够了

在这个已经被大模型包围的时代,不了解一点大模型的基础知识和相关概念,可能出去聊天都接不上话。刚好近期我也一直在用ChatGPT和GitHub Copilot,也刚好对这些基础知识很感兴趣,于是看了一些科普类视频和报告,做了如下的整理总结,分享与你!

一句话描述GPT

GPT全称Generative Pre-Training Transformer,即三个关键词:生成式 预训练 变换模型

GPT模型通过在大量数据上学习到的语言模式,预测下一个字(token),生成自然语言文本。

大模型的6大关键技术

  • 大模型

类似于人类的大脑,通过思考和规划来完成任务;

  • Prompt(提示词工程)

类似于人类的沟通,上级通过布置任务来让下级完成一项任务;

  • RAG(检索增强生成)

类似于人类想要暂时完成一件任务,但是这件任务暂时不会做。例如马上要大学期末考试了,我们需要临时抱佛脚突击一周,以求得考试及格分数,但是考完试以后,这些知识就忘得一干二净了。又或者说它也类似于大学期末的开卷考试,反正知识点都在书里,你平时都没学过,得先找一找,找到了就把相关答案写在试卷上,考完了还是忘得一干二净,但是你的目标达到了:考试及格60分万岁!

  • Fine-tunig(微调)

类似于人类想要彻底学会一个技能,例如想要学会大模型的技术,我们需要通过系统的培训以及通过实战去真正的掌握大模型技术。

  • Function Calling(函数调用)

类似于人类使用工具完成一件任务,例如想要查询成都的天气情况,我们要么直接打开天气预报的App,要么直接在百度上搜索,总之是通过工具来完成这件事。

  • Agent

类似于人类通过沟通、分工和协作来完成一件复杂的任务,通常会结合使用到上面提到的五个技术来完成任务,而且大模型时代的Agent也不是单兵作战而是多个Agent之间合作来完成任务。例如想要开发一个客服项目,需要产品经理Agent、架构师Agent、开发者Agent、测试者Agent、运维Agent 和 项目管理Agent 像人类一样去沟通协作,最后才能把这个项目自动地完成。

知识问答的3种主要方式

(1)大模型直答

最常见的方式:直接向LLM提问,LLM给出回答。

(2)大模型微调(Fine-Tuning)

首先,将企业私有知识加给通用大模型进行微调形成私有大模型;然后,再将问题给到私有大模型进行回答。

(3)大模型RAG(检索增强生成)

首先,对企业的知识库进行检索得到相关的知识片段;然后,将知识片段和原问题组合成新的提示词发给通用大模型得到回答;

3种方式的效果对比:

方式

外在幻觉

领域知识

实时信息

可溯源

成本

直答

微调

RAG

总结:在企业落地知识问答库时,如果为了追求成本和回答准确度,推荐使用RAG方案

AI Agent到底是什么?

首先,在产品层面:AI Agent是AGI时代新的应用形态

这其实是应用形态的演进:在AGI时代之前是移动互联网时代,它的产品形态是APP。在进入AGI时代后,产品形态变为了AI Agent。

未来现有的部分高级程序员写的应用就不再会是App,而是AI Agent了!

其次,在技术层面:面向过程架构 → 面向目标架构 的转变(也称为:软件架构的范式迁移);

比如,在App时代写一个用户系统,需要把整个用户从注册到登录再到注销,一步一步地把整个流程结合if-else把它开发出来。这个生成的过程我们叫做面向过程的架构,需要预定义指令、逻辑和规则

但是,在AI Agent时代,很多情况下不需要把这些指令一个一个地指出来,只需要一句话就行了,比如说提供一个prompt“请帮我完成一个用户系统,它包含用户注册、登录、查询等功能”,然后大模型就会帮你去完成。这个生成的过程我们叫做面向目标的架构,具有目标导向和动态规划的特点,由AI Agent自主生成。

大模型和Agent有啥区别?

Agent会在大模型的推理结果基础之上,使用一些工具(如调用API)完成某个特定的任务,这个技术也被称为Function Calling(函数调用)。

当下大模型的参数量提升AI Agent的理解力和泛化能力,使其能够更好地处理多种任务和上下文信息,这增强了AI代理的自然语言处理能力,从而提供更加个性化、连贯的交互体验,是当下Agent的构建关键!

总结:大模型时代下的 AI Agent = LLM × (规划+记忆+工具+行动)

AI Agent的应用场景通常与特定任务或环境紧密相关。例如,在智能家居系统中,AI Agent可以根据用户的生活习惯和偏好自动调节家庭设备的运行状态。在游戏中,AI Agent能够提供具有挑战性的对手或复杂的游戏环境动态。

Agent架构的核心流程

Agent架构有三个重要的模块:规划****模块(Planning)、执行模块(Action) 和 观察****模块(Observation),如下图所示:

举个例子,假设我们有一个prompt“请用python画一个圆心”。

首先,在规划模块,Agent会将这个需求拆解为三个子项:写Python代码、调用IPython解释器、调用Docker运行环境;

其次,在执行模块,Agent会分别执行拆解的事项,也就是去调用各种工具;

最后,在观察模块,Agent会对每一步的执行结果做观测,如果check完毕没问题,就给到用户最终的答案。如果觉得有问题,比如执行的过程中出现了Timeout之类的错误,就会做一些Retry的操作。如果Retry次数超过了最大重试次数,这时候就可能会把这个进程Kill掉,然后重新进入规划模块重新规划。

在这三个模块或者说能力中,最重要的当属规划模块!

大模型和程序员的关系

(1)目前ChatGPT对程序员到底有哪些实质性的帮助?

第一点:Code Review

ChatGPT能够理解代码,并针对代码给出针对性的建议和优化方案;

第二点:写测试用例、单元测试、集成测试等,这些ChatGPT都很擅长!

第三点:对线上问题的定位和分析

线上问题的各种疑难杂症,ChatGPT都能胜任!

第四点:SQL的翻译

实现两种数据库的SQL语言转换,比如将Oracle的SQL脚本转换成MySQL的SQL脚本。

(2)有了AI编程,还需要程序员吗?

第一,在冯诺依曼架构体系下,程序需要的是确定性计算

第二,由于大模型本身的概率性,目前大模型生成的代码还具备一定的随意性和不确定性

第三,目前大模型更擅长的是一些抽象层次比较低的工作,比如一段代码或一个算法的实现,写一个单元测试等等。而一些抽象层次比较高的工作,比如需求分析、架构设计、领域设计、架构选型等,这些工作反而是大模型不擅长的,而这些工作是比较具备有竞争力的,这恰恰是一些高级程序员以及系统架构师的价值所在。

(3)应用实践AIGC有几层境界?

第一层境界:简单对话;

通过ctrl-c/v出结果,人人都会。

第二层境界:系统掌握Prompt Engineering;

通过系统掌握好提示词工程,真正赋能工作提效。

第三层境界:将AIGC融入业务流程,指挥AIGC完成复杂的任务;

通过掌握AIGC的技能,并完成业务领域知识的深入结合。

第四层境界:拥有自己的大模型;

熟悉大模型的架构原理,通过开源大模型微调,最好能够拥有一定的行业数据壁垒。

第五层境界:参与设计训练大模型;

比如从事ChatGPT等研发工作。

目前,Edison还处于第二层即提示词工程,我们整理了很多针对SDLC(软件开发生命周期)过程中的经典场景的提示词模板来做提效。

那么,你处于哪一层呢?

(4)如何掌握AI大模型开发技能?

第一步:掌握开发AGI时代新应用程序的技能;

比如:大模型应用内核、LangChain开发框架、向量数据库等;

第二步:搞定开发企业级AI Agent的应用技能;

比如:AI Agent、大模型缓存、算力等;

第三步:驾驭开发企业级专有大模型的技能;

比如:RAG、微调等;

第四步:深入应用大模型技术成为开发大师;

比如:大模型预训练、LLMOps等;

小结

大模型应用开发学习实践之路漫漫,我们IT开发者也会逐渐从Application的开发转向Agent的开发的范式的转变,一起加油吧!

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述


http://www.kler.cn/a/309147.html

相关文章:

  • 【Android、IOS、Flutter、鸿蒙、ReactNative 】约束布局
  • 管家婆财贸ERP BB045.销售批量收款
  • Python如何从HTML提取img标签下的src属性
  • 【C++】详解RAII思想与智能指针
  • pgsql和mysql的自增主键差异
  • [SWPUCTF 2022 新生赛]Power! 反序列化详细题解
  • 1.接口测试基础
  • Selenium等待机制:理解并应用显式等待与隐式等待,解决页面加载慢的问题
  • golang实现正向代理http_proxy和https_proxy
  • 【Python】从基础到进阶(八):文件操作与上下文管理
  • mybatis-generator代码生成
  • iOS 18 新功能:控制中心大變身!控制項目自由選配
  • 手机、平板电脑编程———未来之窗行业应用跨平台架构
  • 「iOS」push与present
  • Centos7安装gitlab-ce(rpm安装方式)
  • 干耳怎么掏耳朵?可视挖耳勺推荐平价
  • DeepFake换脸检测
  • 828华为云征文|基于华为云Flexus云服务器X实现个人博客搭建
  • SpringMVC映射请求;SpringMVC返回值类型;SpringMVC参数绑定;
  • Redis的缓存穿透、缓存雪崩、缓存击穿怎么解决
  • 【苍穹外卖】总结
  • 排序算法-选择排序
  • 深度学习自编码器 - 正则自编码器篇
  • 3.python 爬虫基础HTTP原理2和网页基础
  • Qt/C++ 了解NTFS文件系统,获取首张MFT表数据,解析文件记录头内容找到第一个属性偏移地址
  • 工具类中使用@Value注解引入静态地址