当前位置: 首页 > article >正文

TaskingAI实践(一)快速上手

TaskingAI实践-20240912:

20240912 写在前面 我们一直走一直看,路过的风景,一闪而过的瞬间,终究还是会留下瞬间印记。不学习不代表它不存在,学习了不代表它就直接可以用,不用不代表它没有用。说到最深处,人生就是一场体验。

TaskingAI:

TaskingAI 是一个基于大语言模型 (LLM) 的开发与部署平台,提供统一的 API 接入数百个 AI 模型,并通过直观的用户界面管理功能模块,如工具、RAG 系统、助手等。其主要特点包括一键部署、异步高效处理、集成各种 LLM 模型和插件。支持状态和无状态的使用方式,帮助开发者轻松构建多租户 AI 应用。通过 Docker 快速启动,也提供 SDK 与 API 进行编程交互。

更多信息可以查看TaskingAI

快速上手Quickstart with Docker

A simple way to initiate self-hosted TaskingAI community edition is through Docker.

前置环境准备Prerequisites

  • Docker环境,Docker and Docker Compose installed on your machine.
  • GIT环境,Git installed for cloning the repository.
  • Python环境>3.8,Python environment (above Python 3.8) for running the client SDK.

安装 Installation

从GitHub下载项目源代码

First, clone the TaskingAI (community edition) repository from GitHub.

git clone https://github.com/taskingai/taskingai.git
cd taskingai

进入到项目仓库,进入到docker目录,

Inside the cloned repository, go to the docker directory.

cd docker
  1. Copy .env.example to .env:

    cp .env.example .env
    
  2. Edit the .env file: Open the .env file in your favorite text editor and update the necessary configurations. Ensure all required environment variables are set correctly.

  3. Start Docker Compose: Run the following command to start all services:

    docker-compose -p taskingai --env-file .env up -d
    

项目启动后直接访问, http://localhost:8080。默认用户名和密码是 admin and TaskingAI321.

Once the service is up, access the TaskingAI console through your browser with the URL http://localhost:8080. The default username and password are admin and TaskingAI321.

升级操作 Upgrade

If you have already installed TaskingAI with a previous version and want to upgrade to the latest version, first update the repository.

git pull origin master

Then stop the current docker service, upgrade to the latest version by pulling the latest image, and finally restart the service.

cd docker
docker-compose -p taskingai down
docker-compose -p taskingai pull
docker-compose -p taskingai --env-file .env up -d

Don’t worry about data loss; your data will be automatically migrated to the latest version schema if needed.

在这里插入图片描述
在这里插入图片描述

问题:

8080端口占用

实践遇到的docker端口占用问题,当然和taskingAI本身无关,是环境问题,解决端口冲突即可。

docker git:(master) pwd
/Users/zhizhou/Documents/docker_home/taskingai/docker

➜  docker git:(master) docker-compose -p taskingai --env-file .env up -d
[+] Running 7/8
 ⠿ Container taskingai-cache-1              Running                                            0.0s
 ⠿ Container taskingai-db-1                 Running                                            0.0s
 ⠿ Container taskingai-backend-inference-1  Start...                                          21.0s
 ⠿ Container taskingai-backend-plugin-1     Started                                           21.0s
 ⠿ Container taskingai-backend-web-1        Started                                           11.2s
 ⠿ Container taskingai-backend-api-1        Started                                           11.2s
 ⠿ Container taskingai-frontend-1           Started                                            1.3s
 ⠿ Container taskingai-nginx-1              Starting                                           1.2s
Error response from daemon: Ports are not available: exposing port TCP 0.0.0.0:8080 -> 0.0.0.0:0: listen tcp 0.0.0.0:8080: bind: address already in use

上述终端表示 端口被占用,检查一下是否有正在启动的Java程序 或者直接查看端口8080的使用情况。

docker git:(master) lsof -i:8080
COMMAND   PID    USER   FD   TYPE             DEVICE SIZE/OFF NODE NAME
java    45590 zhizhou   96u  IPv6 0x717191f587125ef1      0t0  TCP *:http-alt (LISTEN)docker git:(master) lsof -i:8080docker git:(master) docker-compose -p taskingai up -d                   
[+] Running 8/8
 ⠿ Container taskingai-cache-1              Running                                            0.0s
 ⠿ Container taskingai-db-1                 Running                                            0.0s
 ⠿ Container taskingai-backend-plugin-1     Running                                            0.0s
 ⠿ Container taskingai-backend-inference-1  Runni...                                           0.0s
 ⠿ Container taskingai-backend-web-1        Running                                            0.0s
 ⠿ Container taskingai-backend-api-1        Started                                            0.2s
 ⠿ Container taskingai-frontend-1           Running                                            0.0s
 ⠿ Container taskingai-nginx-1              Started                                            0.3s
➜  docker git:(master) 

相关文档

github:

https://github.com/TaskingAI/TaskingAI?tab=readme-ov-file

首页

https://tasking.ai/

API文档

https://docs.tasking.ai/api/


http://www.kler.cn/a/309294.html

相关文章:

  • 【Python】爬虫通过验证码
  • Typescript类型运算符、关键字以及内置高级类型
  • 给查询业务添加redis缓存和缓存更新策略
  • WPF 应用程序中使用 Prism 框架时,有多种方式可以注册服务和依赖项
  • AI大模型开发架构设计(14)——基于LangChain大模型的案例架构实战
  • 力扣每日一题 3258. 统计满足 K 约束的子字符串数量 I
  • 【Java】基础语法介绍
  • 【自动驾驶】决策规划算法 | 数学基础(三)直角坐标与自然坐标转换Ⅱ
  • 论文速递 | 基于MIC-ICEEMD-RIME-DHKELM的碳排放预测模型研究
  • Linux系统上搭建Vulhub靶场
  • OpenCV通过鼠标提前ROI(C++实现)
  • 电机纹波电流与PWM控制周期关系
  • Java并发常见面试题(上)
  • Rust GUI框架Tauri V1 入门
  • 【算法】滑动窗口—字符串的排列
  • 绕过CDN查找真实IP方法
  • Mybatis-plus复习篇
  • 【浏览器面试真题】sessionStorage和localStorage
  • 全新WordPress插件简化成功之路
  • 小红书治愈插画副业,猛猛涨粉上万+,每天只用5分钟
  • 联邦大模型Federated Large Language Model
  • OA项目之左侧菜单动态选项卡
  • 开发小程序
  • 微服务_入门2
  • 【重学 MySQL】二十五、等值连接vs非等值连接、自连接vs非自连接
  • Java中的OOM与SOF:详解内存溢出与栈溢出