爆改YOLOv8|使用MobileNetV4替换yolov8的Backbone
1,本文介绍
MobileNetV4 是最新的 MobileNet 系列模型,专为移动设备优化。它引入了通用反转瓶颈(UIB)和 Mobile MQA 注意力机制,提升了推理速度和效率。通过改进的神经网络架构搜索(NAS)和蒸馏技术,MobileNetV4 在多种硬件平台上实现了高效和准确的表现,在 ImageNet-1K 数据集上达到 87% 的准确率,同时在 Pixel 8 EdgeTPU 上的运行时间为 3.8 毫秒。
关于MobileNetV4的详细介绍可以看论文:[2404.10518] MobileNetV4 - Universal Models for the Mobile Ecosystem
本文将讲解如何将MobileNetV4融合进yolov8
话不多说,上代码!
2, 将MobileNetV4融合进yolov8
2.1 步骤一
首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个MobileNetV4.py文件,文件名字可以根据你自己的习惯起,然后将MobileNetV4的核心代码复制进去。
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['MobileNetV4ConvLarge', 'MobileNetV4ConvSmall', 'MobileNetV4ConvMedium', 'MobileNetV4HybridMedium', 'MobileNetV4HybridLarge']
MNV4ConvSmall_BLOCK_SPECS = {
"conv0": {
"block_name": "convbn",
"num_blocks": 1,
"block_specs": [
[3, 32, 3, 2]
]
},
"layer1": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[32, 32, 3, 2],
[32, 32, 1, 1]
]
},
"layer2": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[32, 96, 3, 2],
[96, 64, 1, 1]
]
},
"layer3": {
"block_name": "uib",
"num_blocks": 6,
"block_specs": [
[64, 96, 5, 5, True, 2, 3],
[96, 96, 0, 3, True, 1, 2],
[96, 96, 0, 3, True, 1, 2],
[96, 96, 0, 3, True, 1, 2],
[96, 96, 0, 3, True, 1, 2],
[96, 96, 3, 0, True, 1, 4],
]
},
"layer4": {
"block_name": "uib",
"num_blocks": 6,
"block_specs": [
[96, 128, 3, 3, True, 2, 6],
[128, 128, 5, 5, True, 1, 4],
[128, 128, 0, 5, True, 1, 4],
[128, 128, 0, 5, True, 1, 3],
[128, 128, 0, 3, True, 1, 4],
[128, 128, 0, 3, True, 1, 4],
]
},
"layer5": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[128, 960, 1, 1],
[960, 1280, 1, 1]
]
}
}
MNV4ConvMedium_BLOCK_SPECS = {
"conv0": {
"block_name": "convbn",
"num_blocks": 1,
"block_specs": [
[3, 32, 3, 2]
]
},
"layer1": {
"block_name": "fused_ib",
"num_blocks": 1,
"block_specs": [
[32, 48, 2, 4.0, True]
]
},
"layer2": {
"block_name": "uib",
"num_blocks": 2,
"block_specs": [
[48, 80, 3, 5, True, 2, 4],
[80, 80, 3, 3, True, 1, 2]
]
},
"layer3": {
"block_name": "uib",
"num_blocks": 8,
"block_specs": [
[80, 160, 3, 5, True, 2, 6],
[160, 160, 3, 3, True, 1, 4],
[160, 160, 3, 3, True, 1, 4],
[160, 160, 3, 5, True, 1, 4],
[160, 160, 3, 3, True, 1, 4],
[160, 160, 3, 0, True, 1, 4],
[160, 160, 0, 0, True, 1, 2],
[160, 160, 3, 0, True, 1, 4]
]
},
"layer4": {
"block_name": "uib",
"num_blocks": 11,
"block_specs": [
[160, 256, 5, 5, True, 2, 6],
[256, 256, 5, 5, True, 1, 4],
[256, 256, 3, 5, True, 1, 4],
[256, 256, 3, 5, True, 1, 4],
[256, 256, 0, 0, True, 1, 4],
[256, 256, 3, 0, True, 1, 4],
[256, 256, 3, 5, True, 1, 2],
[256, 256, 5, 5, True, 1, 4],
[256, 256, 0, 0, True, 1, 4],
[256, 256, 0, 0, True, 1, 4],
[256, 256, 5, 0, True, 1, 2]
]
},
"layer5": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[256, 960, 1, 1],
[960, 1280, 1, 1]
]
}
}
MNV4ConvLarge_BLOCK_SPECS = {
"conv0": {
"block_name": "convbn",
"num_blocks": 1,
"block_specs": [
[3, 24, 3, 2]
]
},
"layer1": {
"block_name": "fused_ib",
"num_blocks": 1,
"block_specs": [
[24, 48, 2, 4.0, True]
]
},
"layer2": {
"block_name": "uib",
"num_blocks": 2,
"block_specs": [
[48, 96, 3, 5, True, 2, 4],
[96, 96, 3, 3, True, 1, 4]
]
},
"layer3": {
"block_name": "uib",
"num_blocks": 11,
"block_specs": [
[96, 192, 3, 5, True, 2, 4],
[192, 192, 3, 3, True, 1, 4],
[192, 192, 3, 3, True, 1, 4],
[192, 192, 3, 3, True, 1, 4],
[192, 192, 3, 5, True, 1, 4],
[192, 192, 5, 3, True, 1, 4],
[192, 192, 5, 3, True, 1, 4],
[192, 192, 5, 3, True, 1, 4],
[192, 192, 5, 3, True, 1, 4],
[192, 192, 5, 3, True, 1, 4],
[192, 192, 3, 0, True, 1, 4]
]
},
"layer4": {
"block_name": "uib",
"num_blocks": 13,
"block_specs": [
[192, 512, 5, 5, True, 2, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 3, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 3, True, 1, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 0, True, 1, 4]
]
},
"layer5": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[512, 960, 1, 1],
[960, 1280, 1, 1]
]
}
}
def mhsa(num_heads, key_dim, value_dim, px):
if px == 24:
kv_strides = 2
elif px == 12:
kv_strides = 1
query_h_strides = 1
query_w_strides = 1
use_layer_scale = True
use_multi_query = True
use_residual = True
return [
num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
use_layer_scale, use_multi_query, use_residual
]
MNV4HybridConvMedium_BLOCK_SPECS = {
"conv0": {
"block_name": "convbn",
"num_blocks": 1,
"block_specs": [
[3, 32, 3, 2]
]
},
"layer1": {
"block_name": "fused_ib",
"num_blocks": 1,
"block_specs": [
[32, 48, 2, 4.0, True]
]
},
"layer2": {
"block_name": "uib",
"num_blocks": 2,
"block_specs": [
[48, 80, 3, 5, True, 2, 4],
[80, 80, 3, 3, True, 1, 2]
]
},
"layer3": {
"block_name": "uib",
"num_blocks": 8,
"block_specs": [
[80, 160, 3, 5, True, 2, 6],
[160, 160, 0, 0, True, 1, 2],
[160, 160, 3, 3, True, 1, 4],
[160, 160, 3, 5, True, 1, 4, mhsa(4, 64, 64, 24)],
[160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
[160, 160, 3, 0, True, 1, 4, mhsa(4, 64, 64, 24)],
[160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
[160, 160, 3, 0, True, 1, 4]
]
},
"layer4": {
"block_name": "uib",
"num_blocks": 12,
"block_specs": [
[160, 256, 5, 5, True, 2, 6],
[256, 256, 5, 5, True, 1, 4],
[256, 256, 3, 5, True, 1, 4],
[256, 256, 3, 5, True, 1, 4],
[256, 256, 0, 0, True, 1, 2],
[256, 256, 3, 5, True, 1, 2],
[256, 256, 0, 0, True, 1, 2],
[256, 256, 0, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
[256, 256, 3, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
[256, 256, 5, 5, True, 1, 4, mhsa(4, 64, 64, 12)],
[256, 256, 5, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
[256, 256, 5, 0, True, 1, 4]
]
},
"layer5": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[256, 960, 1, 1],
[960, 1280, 1, 1]
]
}
}
MNV4HybridConvLarge_BLOCK_SPECS = {
"conv0": {
"block_name": "convbn",
"num_blocks": 1,
"block_specs": [
[3, 24, 3, 2]
]
},
"layer1": {
"block_name": "fused_ib",
"num_blocks": 1,
"block_specs": [
[24, 48, 2, 4.0, True]
]
},
"layer2": {
"block_name": "uib",
"num_blocks": 2,
"block_specs": [
[48, 96, 3, 5, True, 2, 4],
[96, 96, 3, 3, True, 1, 4]
]
},
"layer3": {
"block_name": "uib",
"num_blocks": 11,
"block_specs": [
[96, 192, 3, 5, True, 2, 4],
[192, 192, 3, 3, True, 1, 4],
[192, 192, 3, 3, True, 1, 4],
[192, 192, 3, 3, True, 1, 4],
[192, 192, 3, 5, True, 1, 4],
[192, 192, 5, 3, True, 1, 4],
[192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
[192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
[192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
[192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
[192, 192, 3, 0, True, 1, 4]
]
},
"layer4": {
"block_name": "uib",
"num_blocks": 14,
"block_specs": [
[192, 512, 5, 5, True, 2, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 5, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 3, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 0, True, 1, 4],
[512, 512, 5, 3, True, 1, 4],
[512, 512, 5, 5, True, 1, 4, mhsa(8, 64, 64, 12)],
[512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
[512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
[512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
[512, 512, 5, 0, True, 1, 4]
]
},
"layer5": {
"block_name": "convbn",
"num_blocks": 2,
"block_specs": [
[512, 960, 1, 1],
[960, 1280, 1, 1]
]
}
}
MODEL_SPECS = {
"MobileNetV4ConvSmall": MNV4ConvSmall_BLOCK_SPECS,
"MobileNetV4ConvMedium": MNV4ConvMedium_BLOCK_SPECS,
"MobileNetV4ConvLarge": MNV4ConvLarge_BLOCK_SPECS,
"MobileNetV4HybridMedium": MNV4HybridConvMedium_BLOCK_SPECS,
"MobileNetV4HybridLarge": MNV4HybridConvLarge_BLOCK_SPECS
}
def make_divisible(
value: float,
divisor: int,
min_value: Optional[float] = None,
round_down_protect: bool = True,
) -> int:
"""
This function is copied from here
"https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_layers.py"
This is to ensure that all layers have channels that are divisible by 8.
Args:
value: A `float` of original value.
divisor: An `int` of the divisor that need to be checked upon.
min_value: A `float` of minimum value threshold.
round_down_protect: A `bool` indicating whether round down more than 10%
will be allowed.
Returns:
The adjusted value in `int` that is divisible against divisor.
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if round_down_protect and new_value < 0.9 * value:
new_value += divisor
return int(new_value)
def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
conv = nn.Sequential()
padding = (kernel_size - 1) // 2
conv.add_module('conv', nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))
if norm:
conv.add_module('BatchNorm2d', nn.BatchNorm2d(oup))
if act:
conv.add_module('Activation', nn.ReLU6())
return conv
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, act=False, squeeze_excitation=False):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.block = nn.Sequential()
if expand_ratio != 1:
self.block.add_module('exp_1x1', conv_2d(inp, hidden_dim, kernel_size=3, stride=stride))
if squeeze_excitation:
self.block.add_module('conv_3x3',
conv_2d(hidden_dim, hidden_dim, kernel_size=3, stride=stride, groups=hidden_dim))
self.block.add_module('red_1x1', conv_2d(hidden_dim, oup, kernel_size=1, stride=1, act=act))
self.use_res_connect = self.stride == 1 and inp == oup
def forward(self, x):
if self.use_res_connect:
return x + self.block(x)
else:
return self.block(x)
class UniversalInvertedBottleneckBlock(nn.Module):
def __init__(self,
inp,
oup,
start_dw_kernel_size,
middle_dw_kernel_size,
middle_dw_downsample,
stride,
expand_ratio
):
"""An inverted bottleneck block with optional depthwises.
Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
"""
super().__init__()
# Starting depthwise conv.
self.start_dw_kernel_size = start_dw_kernel_size
if self.start_dw_kernel_size:
stride_ = stride if not middle_dw_downsample else 1
self._start_dw_ = conv_2d(inp, inp, kernel_size=start_dw_kernel_size, stride=stride_, groups=inp, act=False)
# Expansion with 1x1 convs.
expand_filters = make_divisible(inp * expand_ratio, 8)
self._expand_conv = conv_2d(inp, expand_filters, kernel_size=1)
# Middle depthwise conv.
self.middle_dw_kernel_size = middle_dw_kernel_size
if self.middle_dw_kernel_size:
stride_ = stride if middle_dw_downsample else 1
self._middle_dw = conv_2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_,
groups=expand_filters)
# Projection with 1x1 convs.
self._proj_conv = conv_2d(expand_filters, oup, kernel_size=1, stride=1, act=False)
# Ending depthwise conv.
# this not used
# _end_dw_kernel_size = 0
# self._end_dw = conv_2d(oup, oup, kernel_size=_end_dw_kernel_size, stride=stride, groups=inp, act=False)
def forward(self, x):
if self.start_dw_kernel_size:
x = self._start_dw_(x)
# print("_start_dw_", x.shape)
x = self._expand_conv(x)
# print("_expand_conv", x.shape)
if self.middle_dw_kernel_size:
x = self._middle_dw(x)
# print("_middle_dw", x.shape)
x = self._proj_conv(x)
# print("_proj_conv", x.shape)
return x
class MultiQueryAttentionLayerWithDownSampling(nn.Module):
def __init__(self, inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
dw_kernel_size=3, dropout=0.0):
"""Multi Query Attention with spatial downsampling.
Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
3 parameters are introduced for the spatial downsampling:
1. kv_strides: downsampling factor on Key and Values only.
2. query_h_strides: vertical strides on Query only.
3. query_w_strides: horizontal strides on Query only.
This is an optimized version.
1. Projections in Attention is explict written out as 1x1 Conv2D.
2. Additional reshapes are introduced to bring a up to 3x speed up.
"""
super().__init__()
self.num_heads = num_heads
self.key_dim = key_dim
self.value_dim = value_dim
self.query_h_strides = query_h_strides
self.query_w_strides = query_w_strides
self.kv_strides = kv_strides
self.dw_kernel_size = dw_kernel_size
self.dropout = dropout
self.head_dim = key_dim // num_heads
if self.query_h_strides > 1 or self.query_w_strides > 1:
self._query_downsampling_norm = nn.BatchNorm2d(inp)
self._query_proj = conv_2d(inp, num_heads * key_dim, 1, 1, norm=False, act=False)
if self.kv_strides > 1:
self._key_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
self._value_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
self._key_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
self._value_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
self._output_proj = conv_2d(num_heads * key_dim, inp, 1, 1, norm=False, act=False)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
batch_size, seq_length, _, _ = x.size()
if self.query_h_strides > 1 or self.query_w_strides > 1:
q = F.avg_pool2d(self.query_h_stride, self.query_w_stride)
q = self._query_downsampling_norm(q)
q = self._query_proj(q)
else:
q = self._query_proj(x)
px = q.size(2)
q = q.view(batch_size, self.num_heads, -1, self.key_dim) # [batch_size, num_heads, seq_length, key_dim]
if self.kv_strides > 1:
k = self._key_dw_conv(x)
k = self._key_proj(k)
v = self._value_dw_conv(x)
v = self._value_proj(v)
else:
k = self._key_proj(x)
v = self._value_proj(x)
k = k.view(batch_size, self.key_dim, -1) # [batch_size, key_dim, seq_length]
v = v.view(batch_size, -1, self.key_dim) # [batch_size, seq_length, key_dim]
# calculate attn score
attn_score = torch.matmul(q, k) / (self.head_dim ** 0.5)
attn_score = self.dropout(attn_score)
attn_score = F.softmax(attn_score, dim=-1)
context = torch.matmul(attn_score, v)
context = context.view(batch_size, self.num_heads * self.key_dim, px, px)
output = self._output_proj(context)
return output
class MNV4LayerScale(nn.Module):
def __init__(self, init_value):
"""LayerScale as introduced in CaiT: https://arxiv.org/abs/2103.17239
Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
As used in MobileNetV4.
Attributes:
init_value (float): value to initialize the diagonal matrix of LayerScale.
"""
super().__init__()
self.init_value = init_value
def forward(self, x):
gamma = self.init_value * torch.ones(x.size(-1), dtype=x.dtype, device=x.device)
return x * gamma
class MultiHeadSelfAttentionBlock(nn.Module):
def __init__(
self,
inp,
num_heads,
key_dim,
value_dim,
query_h_strides,
query_w_strides,
kv_strides,
use_layer_scale,
use_multi_query,
use_residual=True
):
super().__init__()
self.query_h_strides = query_h_strides
self.query_w_strides = query_w_strides
self.kv_strides = kv_strides
self.use_layer_scale = use_layer_scale
self.use_multi_query = use_multi_query
self.use_residual = use_residual
self._input_norm = nn.BatchNorm2d(inp)
if self.use_multi_query:
self.multi_query_attention = MultiQueryAttentionLayerWithDownSampling(
inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides
)
else:
self.multi_head_attention = nn.MultiheadAttention(inp, num_heads, kdim=key_dim)
if self.use_layer_scale:
self.layer_scale_init_value = 1e-5
self.layer_scale = MNV4LayerScale(self.layer_scale_init_value)
def forward(self, x):
# Not using CPE, skipped
# input norm
shortcut = x
x = self._input_norm(x)
# multi query
if self.use_multi_query:
x = self.multi_query_attention(x)
else:
x = self.multi_head_attention(x, x)
# layer scale
if self.use_layer_scale:
x = self.layer_scale(x)
# use residual
if self.use_residual:
x = x + shortcut
return x
def build_blocks(layer_spec):
if not layer_spec.get('block_name'):
return nn.Sequential()
block_names = layer_spec['block_name']
layers = nn.Sequential()
if block_names == "convbn":
schema_ = ['inp', 'oup', 'kernel_size', 'stride']
for i in range(layer_spec['num_blocks']):
args = dict(zip(schema_, layer_spec['block_specs'][i]))
layers.add_module(f"convbn_{i}", conv_2d(**args))
elif block_names == "uib":
schema_ = ['inp', 'oup', 'start_dw_kernel_size', 'middle_dw_kernel_size', 'middle_dw_downsample', 'stride',
'expand_ratio', 'msha']
for i in range(layer_spec['num_blocks']):
args = dict(zip(schema_, layer_spec['block_specs'][i]))
msha = args.pop("msha") if "msha" in args else 0
layers.add_module(f"uib_{i}", UniversalInvertedBottleneckBlock(**args))
if msha:
msha_schema_ = [
"inp", "num_heads", "key_dim", "value_dim", "query_h_strides", "query_w_strides", "kv_strides",
"use_layer_scale", "use_multi_query", "use_residual"
]
args = dict(zip(msha_schema_, [args['oup']] + (msha)))
layers.add_module(f"msha_{i}", MultiHeadSelfAttentionBlock(**args))
elif block_names == "fused_ib":
schema_ = ['inp', 'oup', 'stride', 'expand_ratio', 'act']
for i in range(layer_spec['num_blocks']):
args = dict(zip(schema_, layer_spec['block_specs'][i]))
layers.add_module(f"fused_ib_{i}", InvertedResidual(**args))
else:
raise NotImplementedError
return layers
class MobileNetV4(nn.Module):
def __init__(self, model):
# MobileNetV4ConvSmall MobileNetV4ConvMedium MobileNetV4ConvLarge
# MobileNetV4HybridMedium MobileNetV4HybridLarge
"""Params to initiate MobilenNetV4
Args:
model : support 5 types of models as indicated in
"https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py"
"""
super().__init__()
assert model in MODEL_SPECS.keys()
self.model = model
self.spec = MODEL_SPECS[self.model]
# conv0
self.conv0 = build_blocks(self.spec['conv0'])
# layer1
self.layer1 = build_blocks(self.spec['layer1'])
# layer2
self.layer2 = build_blocks(self.spec['layer2'])
# layer3
self.layer3 = build_blocks(self.spec['layer3'])
# layer4
self.layer4 = build_blocks(self.spec['layer4'])
# layer5
self.layer5 = build_blocks(self.spec['layer5'])
self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
def forward(self, x):
x0 = self.conv0(x)
x1 = self.layer1(x0)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
# x5 = self.layer5(x4)
# x5 = nn.functional.adaptive_avg_pool2d(x5, 1)
return [x1, x2, x3, x4]
def MobileNetV4ConvSmall():
model = MobileNetV4('MobileNetV4ConvSmall')
return model
def MobileNetV4ConvMedium():
model = MobileNetV4('MobileNetV4ConvMedium')
return model
def MobileNetV4ConvLarge():
model = MobileNetV4('MobileNetV4ConvLarge')
return model
def MobileNetV4HybridMedium():
model = MobileNetV4('MobileNetV4HybridMedium')
return model
def MobileNetV4HybridLarge():
model = MobileNetV4('MobileNetV4HybridLarge')
return model
2.2 步骤二
在task.py导入我们的模块
2.3 步骤三
如下图标注框所示,添加两行代码
2.4 步骤四
在task.py如下图所示位置,添加标注框内所示代码
elif m in {MobileNetV4ConvLarge, MobileNetV4ConvSmall, \
MobileNetV4ConvMedium, MobileNetV4HybridMedium, MobileNetV4HybridLarge}:
m = m(*args)
c2 = m.width_list
backbone = True
2.5 步骤五
在task.py如下图所示位置,添加标注框内所示代码
2.6 步骤六
在task.py如下图所示位置的代码需要替换
替换为下图所示代码
if verbose:
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
save.extend(
x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
if isinstance(c2, list):
ch.extend(c2)
if len(c2) != 5:
ch.insert(0, 0)
else:
ch.append(c2)
2.7 步骤七
这次修改在base_model的predict_once方法里面,在task.py的前面部分代码中。
在task.py如下图所示位置的代码需要替换
替换为下图所示代码
def _predict_once(self, x, profile=False, visualize=False, embed=None):
y, dt, embeddings = [], [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if hasattr(m, 'backbone'):
x = m(x)
if len(x) != 5: # 0 - 5
x.insert(0, None)
for index, i in enumerate(x):
if index in self.save:
y.append(i)
else:
y.append(None)
x = x[-1] # 最后一个输出传给下一层
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
2.8 步骤八
将下图所示代码注释掉,在ultralytics/utils/torch_utils.py中
修改为下图所示
2.9 步骤九
将下图所示代码注释掉,在task.py中,改为s=640
到这里完成修改,但是这里面细节很多,大家一定要注意,仔细修改,步骤比较多,出现错误很难找出来
复制下面的yaml文件运行即可
yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
# MobileNetV4ConvSmall, MobileNetV4ConvLarge, MobileNetV4ConvMedium,
# MobileNetV4HybridMedium, MobileNetV4HybridLarge 支持这五种版本
- [-1, 1, MobileNetV4ConvSmall, []] # 4 将左面的MobileNetV4ConvSmall改为上面任意一个即替换对应的MobileNetV4版本
- [-1, 1, SPPF, [1024, 5]] # 5
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
- [[-1, 3], 1, Concat, [1]] # 7 cat backbone P4
- [-1, 3, C2f, [512]] # 8
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
- [[-1, 2], 1, Concat, [1]] # 10 cat backbone P3
- [-1, 3, C2f, [256]] # 11 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]] # 12
- [[-1, 8], 1, Concat, [1]] # 13 cat head P4
- [-1, 3, C2f, [512]] # 14 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]] # 15
- [[-1, 5], 1, Concat, [1]] # 16 cat head P5
- [-1, 3, C2f, [1024]] # 17 (P5/32-large)
- [[11, 14, 17], 1, Detect, [nc]] # Detect(P3, P4, P5)
# 今天这个修改的地方比较多,大家一定要仔细检查
不知不觉已经看完了哦,动动小手留个点赞吧--_--