当前位置: 首页 > article >正文

基于YOLOv5s的无人机航拍输电线瓷瓶检测(附数据集与操作步骤)

本文主要内容:详细介绍了无人机航拍输电线瓷瓶检测的整个过程,从创建数据集到训练模型再到预测结果全部可视化操作与分析。

文末有数据集获取方式,请先看检测效果

  • 现状

输电线路绝缘瓷瓶的检测主要依赖人工巡检。巡检人员需携带专业设备,攀爬至数十米高的输电塔,对绝缘瓷瓶进行逐一检查。但人工巡检耗时较长,安全风险高,精确度有限,无法实现对大规模输电线路的快速检测,难以发现细微的瓷瓶缺陷,容易导致漏检。

深度学习的应用正逐步改变传统的输电线路绝缘瓷瓶检测方式。

通过无人机搭载的高清摄像头捕捉实时图像,Coovally利用先进的机器视觉技术和成熟的解决方案,运用YOLO算法进行模型训练,可以对瓷瓶破损、污染及老化等异常状况快速识别。

  • 数据集来源

公开数据集。此数据集中共包括263张照片。

  • 操作步骤与结果分析

1.创建数据集:点击创建数据集,填入基本信息,上传图片数据压缩包和标签文件;

2.模型训练:选择任务类型、模型算法以及实验参数;

3.任务训练结束后,可查看任务是否成功及训练成功的指标数以及详细参数等;

模型训练过程中会输出日志,可以查看并跟踪在模型训练过程中出现的问题;

4.模型转换:Coovally平台支持云边端转换,可转换成onnx、TensorRT格式;

5.模型部署:模型部署完成后即可上传图片,进行预测;

图片1预测结果:

图片2预测结果:

图片3预测结果:

6.模型下载与分享:用户可根据自己的需求在Coovally平台进行下载和分享。

综上,本次训练得到的YOLOv5s模型在数据集上表现良好,感兴趣的朋友可以私信我获取数据集。​​​​​​​​​​​​​​


http://www.kler.cn/a/312585.html

相关文章:

  • ctfshow-web入门-SSTI(web361-web368)上
  • 【算法】——二分查找合集
  • 10款翻译工具实践体验感受与解析!!!!!
  • 深度学习——权重初始化、评估指标、梯度消失和梯度爆炸
  • MySQ怎么使用语法介绍(详细)
  • mysql 实现分库分表之 --- 基于 MyCAT 的分片策略详解
  • CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task
  • 云原生-Quarkus
  • 基于Benes网络的SIMD同态密文任意重排
  • HarmonyOS NEXT应用开发案例实践总结合集
  • 【C++笔记】类和对象的深入理解(三)
  • 练习题 - Django 4.x Overviewses 框架概述
  • 1. TypeScript基本语法
  • LangChain 和 Elasticsearch 加速构建 AI 检索代理
  • 练习题 - Django 4.x Models Relationship fields 字段关联关
  • 等保测评中的关键技术挑战与应对策略
  • three.js shader 实现天空中白云
  • 用 Docker 部署 Seafile 社区版
  • C++学习指南(六)----list
  • 【docker】阿里云使用docker,2024各种采坑
  • 【笔记】扩散模型(八):DALL-E 2 (unCLIP) 论文解读与代码实现
  • C++设计模式——Interpreter解释器模式
  • 科技修复记忆:轻松几步,旧照变清晰
  • Android mmap分析
  • Linux进阶命令-scp
  • k8s快速搭建+prometheus部署及使用(纯干货!!!)