安全基础学习-AES128加密算法
前言
AES(Advanced Encryption Standard)是对称加密算法的一个标准,主要用于保护电子数据的安全。AES 支持128、192、和256位密钥长度,其中AES-128是最常用的一种,它使用128位(16字节)的密钥进行加密和解密操作。AES属于分组密码,每次操作128位(16字节)的数据块。
AES128加密流程
AES的加密过程包括以下几步:
-
密钥扩展(Key Expansion):密钥会通过一个密钥扩展算法生成一系列称为“轮密钥”(Round Keys)的密钥。AES-128需要10轮,每轮用到一个轮密钥。
这里的K矩阵就是原始密钥,把每一列用4维向量w来表示,就拆分成了w0,w1,w2,w3,将w3进行g中的运算,先是把4个字节左环移,然后对这4个字节进行S盒变换(字节代替),变换完后,最左面的字节与RCj相加,AES128加密要把以上步骤进行10轮,RCj在每一轮的计算中都不一样,具体如下
-
初始轮(Initial Round):在加密的初始步骤中,将数据块与初始密钥通过按位异或(XOR)进行操作。
-
主要轮(Main Rounds,9轮):每一轮包括四个操作:
-
字节代换(SubBytes):将每个字节使用一个固定的查找表(S盒,Substitution Box)进行替换。
S_BOX = [ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ]
-
行移位(ShiftRows):行内移位操作,按特定规则将数据块的每一行向左循环移位。
-
列混合(MixColumns):列内进行线性变换,使用矩阵乘法混合列的数据。
其中矩阵c为
-
轮密钥加(AddRoundKey):将当前的数据块与当前轮密钥进行按位异或操作。
-
最终轮(Final Round,第10轮):与前9轮的步骤类似,但不包括“列混合”步骤。
-
AES128解密流程
解密过程是加密过程的逆过程,包括:
-
密钥扩展
-
初始轮密钥加
-
主要轮的逆操作(Inverse ShiftRows、Inverse SubBytes、Inverse MixColumns)
# 定义逆S盒,用于解密的字节替换步骤 INV_S_BOX = [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ]
-
最终轮的逆操作(不包括逆列混合)
加密模式
上述所说是16字节数据加密和解密,对于数据大于16字节时,我们可以区分不同模式进行解决
ECB模式的基本原理
-
分块加密:在ECB模式下,明文数据被分成固定大小的块(对于AES,块大小为128位,即16字节)。如果最后一个块不足16字节,则需要使用填充(如PKCS#7填充)来填充至16字节。
-
独立加密:每个明文块使用相同的密钥独立加密,生成相应的密文块。即使明文中的某个块被多次使用,得到的密文也将是相同的。
-
加密流程:
- 将明文分成多个128位的块。
- 对每个块使用AES-128加密算法进行加密,生成密文块。
- 将所有密文块连接在一起,形成最终的密文。
ECB模式的优缺点
优点
- 简单性:ECB模式实现简单,容易理解和使用。
- 并行处理:由于每个块独立加密,可以并行处理多个块,提高加密效率。
缺点
- 模式缺陷:
- 相同明文块生成相同密文块:如果明文中有相同的块,则其加密后的密文也会相同,导致模式泄露信息。
- 模式不安全:由于没有引入任何随机性,攻击者可以通过观察密文的模式来推测明文内容。例如,在图像加密中,相同的图像块将产生相同的加密输出,容易被识别。
python实现
1.直接调用库
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad, unpad
import os
def aes_ecb_encrypt(plain_text, key):
# 创建 AES 加密器
cipher = AES.new(key, AES.MODE_ECB)
# PKCS7 填充
padded_text = pad(plain_text.encode(), AES.block_size)
# 加密
encrypted_text = cipher.encrypt(padded_text)
return encrypted_text
def aes_ecb_decrypt(encrypted_text, key):
# 创建 AES 解密器
cipher = AES.new(key, AES.MODE_ECB)
# 解密
decrypted_padded_text = cipher.decrypt(encrypted_text)
# 移除 PKCS7 填充
decrypted_text = unpad(decrypted_padded_text, AES.block_size).decode()
return decrypted_text
if __name__ == "__main__":
# 生成 16 字节的 AES 密钥
key = os.urandom(16)
# 示例明文
plain_text = "这是一段需要加密的文本。"
# 加密
encrypted_text = aes_ecb_encrypt(plain_text, key)
print("加密后的文本:", encrypted_text.hex())
# 解密
decrypted_text = aes_ecb_decrypt(encrypted_text, key)
print("解密后的文本:", decrypted_text)
参考资料
aes参考资料1(大部分图片来自于此,可点击进入详细阅读)