当前位置: 首页 > article >正文

Pandas中df常用方法介绍

目录

  • 常用方法
    • df.columns
    • df.index
    • df.values
    • df.T
    • df.sort_index()
    • df.sort_values()
  • 案例

常用方法

df.columns

df.columns 是 Pandas 中 DataFrame 对象的一个属性,用于获取 DataFrame 中的列标签(列名)。

基本语法如下:

df.columns

该属性返回一个包含 DataFrame 中所有列标签的 Index 对象,您可以将其视为一个包含列标签的列表。

示例:

import pandas as pd

# 创建一个 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 获取 DataFrame 的列标签
columns = df.columns
print(columns)
Index(['A', 'B'], dtype='object')

df.index

df.index 是 Pandas 中 DataFrame 对象的一个属性,用于获取 DataFrame 的行标签(行索引)。

基本语法如下:

df.index

该属性返回一个表示 DataFrame 的行索引的 Index 对象,类似于一个包含行标签的列表。

示例:

import pandas as pd

# 创建一个 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 获取 DataFrame 的行索引
index = df.index
print(index)

RangeIndex(start=0, stop=3, step=1)

df.values

df.values 是 Pandas 中 DataFrame 对象的一个属性,用于获取 DataFrame 中的数据部分,即 DataFrame 的值。

基本语法如下:

df.values

该属性返回一个包含 DataFrame 中所有数据的 NumPy 数组。每行代表 DataFrame 中的一行数据,每列代表 DataFrame 中的一列数据。

示例:

import pandas as pd

# 创建一个 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 获取 DataFrame 的值
df_values = df.values
print(df_values)

[[1 4]
 [2 5]
 [3 6]]

df.T

df.T 是 Pandas 中 DataFrame 对象的一个属性,用于对 DataFrame 进行转置操作,即将行和列进行互换。

基本语法如下:

df.T

该属性返回一个新的 DataFrame,新的 DataFrame 中的行标签(行索引)变为原 DataFrame 的列标签(列名),列标签(列名)变为原 DataFrame 的行标签(行索引)。

示例:

import pandas as pd

# 创建一个 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 对 DataFrame 进行转置操作
df_transposed = df.T
print(df_transposed)

   0  1  2
A  1  2  3
B  4  5  6

df.sort_index()

df.sort_index() 是 Pandas 中 DataFrame 对象的一个方法,用于根据行索引或列索引对 DataFrame 进行排序。

基本语法如下:

df.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False)

其中,常用的参数包括:

  1. axis:用于指定按行索引(axis=0)还是列索引(axis=1)进行排序。
  2. ascending:用于指定排序的顺序,True表示升序,False 表示降序。
  3. inplace:用于指定是否在原地修改 DataFrame,True 表示在原地修改,False表示返回一个新的排序后的 DataFrame。

示例:

import pandas as pd

# 创建一个 DataFrame
data = {'A': [1, 3, 2], 'B': [4, 6, 5]}
df = pd.DataFrame(data, index=['c', 'a', 'b'])

# 根据行索引排序
sorted_df = df.sort_index()
print(sorted_df)

   A  B
a  3  6
b  2  5
c  1  4

df.sort_values()

df.sort_values() 是 Pandas 中 DataFrame 对象的一个方法,用于根据列中的值对 DataFrame 进行排序。

基本语法如下:

df.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False)

其中,常用的参数包括:

  1. by:指定按照哪一列或多列的值进行排序。
  2. axis:用于指定按行(axis=0)还是按列(axis=1)进行排序。
  3. ascending:用于指定排序的顺序,True 表示升序,False 表示降序。
  4. inplace:用于指定是否在原地修改DataFrame,True 表示在原地修改,False 表示返回一个新的排序后的 DataFrame。

示例:

import pandas as pd

# 创建一个 DataFrame
data = {'A': [3, 1, 2], 'B': [6, 4, 5]}
df = pd.DataFrame(data)

# 根据列'A'的值进行排序
sorted_df = df.sort_values(by='A')
print(sorted_df)

   A  B
1  1  4
2  2  5
0  3  6

案例

import pandas as pd
import numpy as np

df2 =pd.DataFrame({'A':1,
'B':pd.Timestamp('20160102'),
'C':pd.Series(1,index=list(range(4)),dtype='float32'),
'D':np.array([3]*4,dtype='int32'),
'E':pd.Categorical(['test','train','test','train']),
'F':'foo'
})

print(df2)
#print(df2.columns)
#print(df2.values)
#print(df2.index)
#print(df2.T)
print(df2.sort_index(axis=1,ascending =False))

print(df2.sort_index(axis=0,ascending =False))

print(df2.sort_values(by='E'))

   A          B    C  D      E    F
0  1 2016-01-02  1.0  3   test  foo
1  1 2016-01-02  1.0  3  train  foo
2  1 2016-01-02  1.0  3   test  foo
3  1 2016-01-02  1.0  3  train  foo
     F      E  D    C          B  A
0  foo   test  3  1.0 2016-01-02  1
1  foo  train  3  1.0 2016-01-02  1
2  foo   test  3  1.0 2016-01-02  1
3  foo  train  3  1.0 2016-01-02  1
   A          B    C  D      E    F
3  1 2016-01-02  1.0  3  train  foo
2  1 2016-01-02  1.0  3   test  foo
1  1 2016-01-02  1.0  3  train  foo
0  1 2016-01-02  1.0  3   test  foo
   A          B    C  D      E    F
0  1 2016-01-02  1.0  3   test  foo
2  1 2016-01-02  1.0  3   test  foo
1  1 2016-01-02  1.0  3  train  foo
3  1 2016-01-02  1.0  3  train  foo

http://www.kler.cn/a/313093.html

相关文章:

  • 界面控件Kendo UI for Angular中文教程:如何构建带图表的仪表板?(一)
  • Autosar CP 基于CAN的时间同步规范导读
  • 图像处理实验二(Image Understanding and Basic Processing)
  • 10款翻译工具实践体验感受与解析!!!!!
  • 词嵌入方法(Word Embedding)
  • 单元测试、集成测试、系统测试有什么区别
  • MATLAB画图,曲线图如何绘制美观,曲线图10种美化方法
  • Python 异常控制详解:try-except 的应用与多种异常处理策略
  • QEMU 运行Win11 成功的例子
  • OpenCVHaar级联器实现人脸捕捉和微笑检测
  • 煤矿智慧矿井数据集 (1.煤矿采掘工作面智能分析数据集2.煤矿井下钻场智能分析数据集 )
  • en造数据结构与算法C# 群组行为优化 和 头鸟控制
  • Flink 中 Checkpoint 的底层原理和机制
  • Java客户端SpringDataRedis(RedisTemplate使用)
  • Neko一个在Docker环境下的虚拟浏览器
  • 大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
  • Day69补 前后端分离思想
  • JAVA毕业设计176—基于Java+Springboot+vue3的交通旅游订票管理系统(源代码+数据库)
  • 【HTML5】html5开篇基础(1)
  • 【学习笔记】数据结构(六 ①)
  • 通过markdown表格批量生成格式化的word教学单元设计表格
  • 基于深度学习的花卉智能分类识别系统
  • 【win工具】win安装flameshot并设置截图快捷键
  • 【Python报错已解决】xlrd.biffh.XLRDError: Excel xlsx file; not supported
  • C++自动寻径算法
  • 《黑神话悟空》开发框架与战斗系统解析