当前位置: 首页 > article >正文

Pytorch Lightning框架

Pytorch Lightning框架

root@dsw-398300-6795fbc6cd-6752k:/mnt/workspace/bert-bilstm-in-sentiment-classification# python BiLSTM.py 
2024-07-21 20:42:10.214152: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-07-21 20:42:10.251708: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-07-21 20:42:10.870408: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
test++++++++++A
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Some weights of the model checkpoint at ./model/bert-base-chinese were not used when initializing BertModel: ['cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
test+_++++++++++++B
/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:616: UserWarning: Checkpoint directory /mnt/workspace/bert-bilstm-in-sentiment-classification/model/checkpoints exists and is not empty.
  rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]

  | Name      | Type             | Params
-----------------------------------------------
0 | model     | BiLSTMClassifier | 125 M 
1 | criterion | CrossEntropyLoss | 0     
-----------------------------------------------
23.6 M    Trainable params
102 M     Non-trainable params
125 M     Total params
503.553   Total estimated model params size (MB)
/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:236: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 8 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.
  rank_zero_warn(
Epoch 4: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 487/487 [01:30<00:00,  5.38it/s, loss=0.171, v_num=8, train_loss_step=0.128, train_loss_epoch=0.185]`Trainer.fit` stopped: `max_epochs=5` reached.                                                                                                                                                                                                                                                                                
Epoch 4: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 487/487 [01:30<00:00,  5.38it/s, loss=0.171, v_num=8, train_loss_step=0.128, train_loss_epoch=0.185]
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1764: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.
  rank_zero_warn(
Testing DataLoader 0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [06:36<00:00,  4.05s/it]
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃        Test metric        ┃       DataLoader 0        ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│            acc            │    0.9047619104385376     │
│          avg_f1           │    0.9017320871353149     │
│       avg_precision       │    0.9123411178588867     │
│        avg_recall         │    0.9047619104385376     │
│         f1_class0         │     0.826066792011261     │
│         f1_class1         │    0.9289177060127258     │
│           loss            │    0.2378724366426468     │
│     precision_class0      │    0.8918467164039612     │
│     precision_class1      │    0.9114090204238892     │
│       recall_class0       │    0.7939081788063049     │
│       recall_class1       │    0.9530112743377686     │
└───────────────────────────┴───────────────────────────┘
[{'loss': 0.2378724366426468, 'recall_class0': 0.7939081788063049, 'recall_class1': 0.9530112743377686, 'precision_class0': 0.8918467164039612, 'precision_class1': 0.9114090204238892, 'f1_class0': 0.826066792011261, 'f1_class1': 0.9289177060127258, 'acc': 0.9047619104385376, 'avg_recall': 0.9047619104385376, 'avg_precision': 0.9123411178588867, 'avg_f1': 0.9017320871353149}]
root@dsw-398300-6795fbc6cd-6752k:/mnt/workspace/bert-bilstm-in-sentiment-classification# 


http://www.kler.cn/a/313805.html

相关文章:

  • doc、pdf转markdown
  • ant design vue的级联选择器cascader的悬浮层样式怎么修改
  • SUN的J2EE与微软的DNA
  • 无公网IP 实现外网访问本地 Docker 部署 Navidrome
  • SpringSecurity详解
  • sparkSQL练习
  • Java集合(List篇)
  • SpringBootAdmin源码修改编译002_踩坑记录一堆坑_记录过程_没有成功---VUE工作笔记0027
  • linux 操作系统下dhcrelay命令介绍和案例应用
  • 28V_1MHZ电子烟,无线鼠标,医疗器械等专用恒频升压转换器超小体积封装
  • 用户态缓存:高效数据交互与性能优化
  • Spring Boot中的响应与分层解耦架构
  • C一语言—动态内存管理
  • 24年蓝桥杯及攻防世界赛题-MISC-1
  • 力扣最热一百题——除自身以外数组的乘积
  • 【学术会议:中国厦门,为全球的计算机科学与管理科技研究者提供一个国际交流平台】第五届计算机科学与管理科技国际学术会议(ICCSMT 2024)
  • win10下使用docker、k8s部署java应用
  • Flask 第六课 -- 路由
  • 如何在Linux下升级R版本和RStudio
  • 2024华为杯研赛E题保姆级教程思路分析
  • Linux进阶命令-rsync
  • B-树底层原理
  • 英语六级-学习
  • uv-ui组件的使用——自定义输入框的样式
  • 【2020工业图像异常检测文献】SPADE
  • 数据中台系统产品原型RP原型Axure高保真交互原型 源文件分享