SparkSQL和Spark常用语句
Spark SQL 常用语句
读取数据
scala
val df = spark.read.option(“header”, “true”).csv(“path/to/csvfile.csv”)
val df = spark.read.parquet(“path/to/parquetfile.parquet”)
val df = spark.read.json(“path/to/jsonfile.json”)
展示数据
scala
df.show()
df.show(5) // 展示前5条记录
打印模式(Schema)
scala
df.printSchema()
选择列
scala
df.select(“column1”, “column2”).show()
df.select($“column1”, $“column2” + 1).show()
过滤数据
scala
df.filter($“column1” > 100).show()
df.filter(“column1 > 100”).show()
分组和聚合
scala
df.groupBy(“column1”).avg(“column2”).show()
df.groupBy(“column1”).agg(Max(“column2”), Sum(“column3”)).show()
排序
scala
df.orderBy($“column1”.desc).show()
df.orderBy(“column1”, “column2”.asc).show()
重命名列
scala
df.withColumnRenamed(“oldName”, “newName”).show()
添加新列
scala
df.withColumn(“newColumn”, $“column1” + $“column2”).show()
删除列
scala
df.drop(“column1”).show()
SQL 查询
scala
df.createOrReplaceTempView(“table_name”)
spark.sql(“SELECT * FROM table_name WHERE column1 > 100”).show()
连接(Join)
scala
val df1 = …
val df2 = …
df1.join(df2, df1(“id”) === df2(“id”)).show()
df1.join(df2, Seq(“id”)).show() // 适用于相同列名的简单连接
写入数据
scala
df.write.option(“header”, “true”).csv(“path/to/output.csv”)
df.write.parquet(“path/to/output.parquet”)
Spark 常用语句(Spark Core)
初始化 SparkConf 和 SparkContext
scala
val conf = new SparkConf().setAppName(“AppName”).setMaster(“local[*]”)
val sc = new SparkContext(conf)
读取数据
scala
val data = sc.textFile(“path/to/textfile.txt”)
展示数据
scala
data.take(10).foreach(println)
映射(Map)
scala
val mappedData = data.map(line => line.split(",")(0))
过滤(Filter)
scala
val filteredData = data.filter(line => line.contains(“keyword”))
flatMap
scala
val flatMappedData = data.flatMap(line => line.split(" "))
行动操作(例如:collect, count, reduce)
scala
data.collect()
data.count()
val reducedData = data.reduce(_ + _)
键值对操作
scala
val pairs = data.map(line => (line.split(",")(0), line.split(",")(1)))
val groupedByKey = pairs.groupByKey()
val reducedByKey = pairs.reduceByKey(_ + _)
排序
scala
val sortedData = data.sortBy(line => line.length)
联合(Union)
scala
val rdd1 = …
val rdd2 = …
val unionedRDD = rdd1.union(rdd2)
缓存(Cache)
scala
data.cache()
保存数据
scala
data.saveAsTextFile(“path/to/output”)