当前位置: 首页 > article >正文

【Linux系统编程】第二十一弹---进程的地址空间

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】【Linux系统编程】

目录

1、进程空间的地址

1.1、基本概念

1.2、代码分析

1.3、如何理解地址空间

1.4、进一步理解页表和写时拷贝

1.5、进一步理解虚拟地址

2、内核进程调度队列 

2.1、一个CPU拥有一个runqueue

2.2、优先级

2.3、活动队列

2.4、过期队列

2.5、active指针和expired指针

2.6、总结


1、进程空间的地址

1.1、基本概念

  • 程序段(Text):程序代码在内存中的映射,存放函数体的二进制代码。
  • 初始化过的数据(Data):在程序运行初已经对变量进行初始化的数据。
  • 未初始化过的数据(BSS):在程序运行初未对变量进行初始化的数据。
  • 栈 (Stack):存储局部、临时变量,函数调用时,存储函数的返回指针,用于控制函数的调用和返回。在程序块开始时自动分配内存,结束时自动释放内存,其操作方式类似于数据结构中的栈。
  • 堆 (Heap):存储动态内存分配,需要程序员手工分配,手工释放.注意它与数据结构中的堆是两回事,分配方式类似于链表。

1.2、代码分析

地址空间图

讲解进程地址空间之前,我们先编写一段C语言程序。

#include<stdio.h>
#include<unistd.h>
int g_val = 100;
int main()
{
  printf("father is running,pid:%d,ppid:%d\n",getpid(),getppid());
  pid_t id = fork();
  if(id == 0)
  {
    // child
    int cnt = 0;
    while(1)
    {
      printf("I am child process,pid:%d,ppid:%d,g_val:%d,&g_val:%p\n",getpid(),getppid(),g_val,&g_val);
      sleep(1);
      cnt++;
      if(cnt == 3)
      {
        g_val = 300;
        printf("I am child process,change %d -> %d\n",100,300);
      }
    }
  }
  else
  {
    // father
    while(1)
    {
      printf("I am father process,pid:%d,ppid:%d,g_val:%d,&g_val:%p\n",getpid(),getppid(),g_val,&g_val);
      sleep(1);
    }
  }
  return 0;
}

 测试结果

从上面的测试结果我们可以看到发现,父子进程,输出地址是一致的,但是变量内容不一样!能得出如下结论: 

  • 变量内容不一样,所以父子进程输出的变量绝对不是同一个变量。
  • 但地址值是一样的,说明,该地址绝对不是物理地址!
  • 在Linux地址下,这种地址叫做 虚拟地址
  • 我们在用C/C++语言所看到的地址,全部都是虚拟地址!物理地址,用户一概看不到,由OS统一管理。

OS必须负责将 虚拟地址 转化成 物理地址 。

具体如下图:

上图分析:使用系统调用接口创建新的进程时,fork后的数据代码,父子进程将会同时执行,同时增加新的进程控制块(tast_struct),父子进程通过刚开始相同的页表指向相同的物理空间,其所使用的进程地址空间对应的位置也是相同的,父子进程指向同一个g_val,因此,父进程和子进程对应的g_val的地址是相同的,但是,当子进程尝试修改g_val变量时,为保证进程的独立性,操作系统识别到当前子进程通过页表找到g_val,想修改g_val,此时,操作系统会重新开辟一段空间,将上述值拷贝下来,修改映射关系,因此使用不同的物理内存地址,互不影响,互相独立。

为什么要写时拷贝呢?写时拷贝的效率会不会很低呢?

通过调整拷贝的时间顺序,达到有效节省空间的效果。

写时拷贝的效率并不会很低,因为如果不写时拷贝,需要将父进程的所以数据拷贝一份,而写时拷贝只需要将需要修改的数据拷贝一份,最坏情况也是跟不写时拷贝的效率一样。

可不可以直接将父进程的数据全部拷贝到新的空间呢?

可以,但是没有必要这么做。

因为子进程是能够访问父进程的数据的,大部分情况下,是不需要进行全部拷贝过来,那样太浪费空间了;我们通常是要进行写入的时候,OS才会要写入的变量复制一份,重新开一个大小一样的空间,在新开的空间内写入数据,再将新空间的地址交给页表。这是按需申请。通过调整拷贝的时间顺序,达到节省空间的目的。

1.3、如何理解地址空间

什么是划分区域?

举个例子,如果需要将桌子划分为两块该如何划分,假设桌子长度为100厘米。我们可以将桌子划分为左边区域和右边区域,左边区域为[1,50],右边区域为[50,100]。用计算机语言描述则可以通过两个结构体来描述,一个描述区域宽度,一个描述哪个区域。

struct area
{
    int start;
    int end;
}
struct desktop
{
    struct area left;
    struct area right;
}

struct desktop d;
//me
d.left.start=1;
d.left.end=70;
//同桌
d.right.start=70;
d.right.end=100;

源代码

地址空间本质就是内核中的一个结构体对象。 

为什么要有地址空间?

1.将无序变成有序,让进程以统一的视角看待物理内存以及自己运行的各个区域。

2.进程管理模块和内存管理模块进行解耦。

3.拦截非法请求---对物理内存的保护。

1.4、进一步理解页表和写时拷贝

页表还有一些其他的作用,1、判断该物理地址是否在内存中(进程挂起情况) 2、识别rwx权限(常量区不能修改值情况)

当操作系统判断出地址不在内存中时还会做进一步判断:

  • 1、是不是数据不在物理内存
  • 2、是不是数据需要写时拷贝
  • 3、如果都不是才能异常处理

写时拷贝

父子进程创建时使用相同的虚拟地址,而进行修改时,经操作系统识别,重新复制一份,并开辟新的空间,经过页表映射的是不同的物理地址,此时修改的是不同的物理地址的数据,其虚拟地址不受影响。

写时拷贝(Copy-on-write,简称COW)是一种计算机程序设计领域的优化策略。其核心思想是,如果有多个调用者(callers)同时请求相同资源(如内存或磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者试图修改资源的内容时,系统才会真正复制一份专用副本(private copy)给该调用者,而其他调用者所见到的最初的资源仍然保持不变。这过程对其他的调用者都是透明的。此作法主要的优点是如果调用者没有修改该资源,就不会有副本(private copy)被创建,因此多个调用者只是读取操作时可以共享同一份资源。

1.5、进一步理解虚拟地址

在最开始的时候,进程地址空间和页表里面的数据从哪里来的呢?

是从可执行程序内部来的。程序里面本身就有地址!!!这个地址就是虚拟地址(逻辑地址)。我们的可执行程序里面已经没有变量名和函数名,都变成了地址;

补充:

objdump -S 可执行程序  # 查看反汇编
objdump -S myprocess > test.s # 将反汇编内容重定向到test.s文件

测试结果 

结论:

创建一个进程,就会创建一个task_struct,地址空间,页表和物理内存。

2、内核进程调度队列 

上图是Linux2.6内核中进程队列的数据结构,之间关系也已经给uu们画出来,方便大家理解 。

2.1、一个CPU拥有一个runqueue

  • 如果有多个CPU就要考虑进程个数的负载均衡问题

2.2、优先级

  • 普通优先级:100~139(我们都是普通的优先级,想想nice值的取值范围,可与之对应!)
  • 实时优先级:0~99(不关心)

2.3、活动队列

  • 时间片还没有结束的所有进程都按照优先级放在该队列
  • nr_active: 总共有多少个运行状态的进程
  • queue[140]: 一个元素就是一个进程队列,相同优先级的进程按照FIFO规则进行排队调度,所以,数组下标就是优先级!
  • 从该结构中,选择一个最合适的进程,过程是怎么的呢?
    • 1. 从0下表开始遍历queue[140]
    • 2. 找到第一个非空队列,该队列必定为优先级最高的队列
    • 3. 拿到选中队列的第一个进程,开始运行,调度完成!
    • 4. 遍历queue[140]时间复杂度是常数!但还是太低效了!
  • bitmap[5]:一共140个优先级,一共140个进程队列,为了提高查找非空队列的效率,就可以用5*32个比特位表示队列是否为空,这样,便可以大大提高查找效率!

2.4、过期队列

  • 过期队列和活动队列结构一模一样
  • 过期队列上放置的进程,都是时间片耗尽的进程
  • 当活动队列上的进程都被处理完毕之后,对过期队列的进程进行时间片重新计算

2.5、active指针和expired指针

  • active指针永远指向活动队列
  • expired指针永远指向过期队列
  • 可是活动队列上的进程会越来越少,过期队列上的进程会越来越多,因为进程时间片到期时一直都存在的。
  • 没关系,在合适的时候,只要能够交换active指针和expired指针的内容,就相当于有具有了一批新的活动进程!


2.6、总结


在系统当中查找一个最合适调度的进程的时间复杂度是一个常数,不随着进程增多而导致时间成本增加,我们称之为进程调度O(1)算法!


http://www.kler.cn/news/316065.html

相关文章:

  • 《概率论与数理统计》学渣笔记
  • uni-app功能 1. 实现点击置顶,滚动吸顶2.swiper一个轮播显示一个半内容且实现无缝滚动3.穿透修改uni-ui的样式
  • 美团测开OC!
  • 【论文串烧】多媒体推荐中的模态平衡学习 | 音视频语音识别中丢失导致的模态偏差对丢失视频帧鲁棒性的影响
  • erlang学习:Linux常用命令2
  • Github 2024-09-23 开源项目周报 Top15
  • Kubernetes集群架构、安装和配置全面指南
  • 目标检测-数据集
  • 【MySQL】获取最近7天和最近14天的订单数量,使用MySQL详细写出,使用不同的方法
  • 想学习下Python和深度学习,Python需要学习到什么程度呢?
  • C++入门——(类的默认成员函数)析构函数
  • 数据库基础知识---------------------------(3)
  • 早期病毒和反病毒技术(网络安全小知识)
  • MATLAB系列08:输入/输入函数
  • SSCMS 插件示例 一插件创建及插件菜单
  • 大厂面试真题:SpringBoot的核心注解
  • FastAPI 的隐藏宝石:自动生成 TypeScript 客户端
  • Golang | Leetcode Golang题解之第423题从英文中重建数字
  • C++学习
  • 机器学习——Bagging
  • String类和String类常用方法
  • LinuxC高级作业1
  • css边框修饰
  • 代码随想录:打家劫舍||
  • 鸿蒙OpenHarmony【轻量系统内核扩展组件(CPU占用率)】子系统开发
  • 【C++】面向对象编程的三大特性:深入解析继承机制
  • Open3D(C++) 基于点云的曲率提取特征点(自定义阈值法)
  • Unity DOTS系列之IJobChunk来迭代处理数据
  • 速盾:高防cdn防御的时候会封ip吗?
  • GPTo1论文详解