快速下载Imagenet数据集
最近在搞视觉-语言大模型的优化和应用,在下载相关数据集时存在问题!!!
首先推荐一个网站HyperAI超神经
可以在这个网站上找多很多相关数据集下载,可以使用aria2c加速下载,基本上是5MB的速度,也可以直接下载或者使用磁力下载
可惜我想要下载的是ILSVRC2012没有找到单独下载的链接,在看到相关大佬的文章,发现可以直接在服务器上使用wget进行下载,也可以使用wget的并行化版本mwge下载(但是具体没有详细了解),以下是我搜索得到的
使用 `mwget` 工具可以实现多线程下载,从而提高下载速度。`mwget` 是 `wget` 的一个多线程版本,可以通过以下步骤安装和使用:
安装步骤:
wget http://jaist.dl.sourceforge.net/project/kmphpfm/mwget/0.1/mwget_0.1.0.orig.tar.bz2
yum install bzip2 gcc-c++ openssl-devel intltool -y
bzip2 -d mwget_0.1.0.orig.tar.bz2
tar -xvf mwget_0.1.0.orig.tar
cd mwget_0.1.0.orig
./configure
make
make install
使用方法:
mwget URL
可以设置线程数,例如设置10个线程:
mwget -n 10 URL
下面特别讲一下使用wget下载
一、数据集下载
训练集(ILSVRC2012_img_train.tar):
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar --no-check-certificate
验证集(ILSVRC2012_img_val.tar):
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar --no-check-certificate
标签映射文件(ILSVRC2012_devkit_t12.tar.gz):
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_devkit_t12.tar.gz --no-check-certificate
二、解压
训练集
cd /home/data/imagenet
执行命令,将训练集解压到文件夹 train 目录下:
mkdir train && tar -xvf ILSVRC2012_img_train.tar -C train && for x in `ls train/*tar`; do fn=train/`basename $x .tar`; mkdir $fn; tar -xvf $x -C $fn; rm -f $fn.tar; done
执行命令,进入 train 目录下:
cd train
执行命令,查看 train 目录下所有文件(图片)的数量,若解压成功,则返回1281167:
ls -lR|grep "^-"|wc -l
验证集
执行命令,进入3个文件所在的根目录:
cd /home/data/imagenet
执行命令,创建解压验证集的文件夹:
mkdir val
执行命令,将验证集图像解压到 val 目录下:
tar -xvf ILSVRC2012_img_val.tar -C ./val
此时 val 目录下是50000张图像,并没有被分类到1000个文件夹下。因此需要将验证集中的图像进行分类存放。
执行命令,解压ILSVRC2012_devkit_t12.tar.gz这个文件:
tar -xzf ILSVRC2012_devkit_t12.tar.gz
该文件中记录着验证集中的图像名及其类别标签之间的映射关系。
在 ‘/home/data/imagenet’ 目录下创建 Python 脚本,假设命名为“unzip.py”,其内容如下:
from scipy import io
import os
import shutil
def move_valimg(val_dir='./val', devkit_dir='./ILSVRC2012_devkit_t12'):
"""
move valimg to correspongding folders.
val_id(start from 1) -> ILSVRC_ID(start from 1) -> WIND
organize like:
/val
/n01440764
images
/n01443537
images
.....
"""
# load synset, val ground truth and val images list
synset = io.loadmat(os.path.join(devkit_dir, 'data', 'meta.mat'))
ground_truth = open(os.path.join(devkit_dir, 'data', 'ILSVRC2012_validation_ground_truth.txt'))
lines = ground_truth.readlines()
labels = [int(line[:-1]) for line in lines]
root, _, filenames = next(os.walk(val_dir))
for filename in filenames:
# val image name -> ILSVRC ID -> WIND
val_id = int(filename.split('.')[0].split('_')[-1])
ILSVRC_ID = labels[val_id-1]
WIND = synset['synsets'][ILSVRC_ID-1][0][1][0]
print("val_id:%d, ILSVRC_ID:%d, WIND:%s" % (val_id, ILSVRC_ID, WIND))
# move val images
output_dir = os.path.join(root, WIND)
if os.path.isdir(output_dir):
pass
else:
os.mkdir(output_dir)
shutil.move(os.path.join(root, filename), os.path.join(output_dir, filename))
if __name__ == '__main__':
move_valimg()
运行脚本:
python unzip.py
特别地,这么大地文件138G,发生中断了怎么办?可以在对应文件夹下加上-c,可以在上次中断的位置继续进行