当前位置: 首页 > article >正文

【算法】遗传算法

一、引言

        遗传算法(Genetic Algorithm, GA)是一种模拟生物进化过程的启发式搜索算法,它通过模拟自然选择、遗传、交叉和突变等生物学机制来优化问题的解决方案。遗传算法因其通用性、高效性和鲁棒性,在多个领域中得到了广泛应用,如工程、科研、经济和艺术等。

二、算法原理

遗传算法的核心原理包括以下几个方面:

  • 编码:将问题的解编码为染色体(通常为一串数字或符号序列)。
  • 初始种群:随机生成一组解作为初始种群。
  • 适应度函数:定义一个适应度函数来评估每个个体的性能。
  • 选择:根据适应度选择个体进行繁殖,高适应度的个体有更高的被选择概率。
  • 交叉:选中的个体通过交叉操作生成新的后代,模拟基因重组。
  • 突变:以一定概率随机改变个体的某些基因,增加种群的多样性。
  • 新一代种群:形成新的种群,重复上述过程直到满足终止条件。

三、数据结构

遗传算法中常用的数据结构包括:

  • 染色体:表示问题的解,通常为一串数字或符号序列。
  • 适应度数组:存储每个个体适应度值的数组。
  • 个体(Individual):表示一个解。通常用一个染色体(Chromosome)来表示,染色体由基因(Gene)组成。
  • 种群(Population):由多个个体组成,是算法的基础单元。
  • 适应度函数(Fitness Function):用于评估个体的优劣。
  • 选择策略(Selection Strategy):确定哪些个体会被选择进行繁殖。常见的策略包括轮盘赌选择、锦标赛选择等。
  • 交叉策略(Crossover Strategy):决定如何将两个父母个体的基因组合成子代个体。常见的策略包括单点交叉、两点交叉等。
  • 变异策略(Mutation Strategy):在个体中引入随机变异,以增加种群的多样性。

四、算法使用场景

遗传算法适用于解决以下类型的优化问题:

  • 组合优化问题:如旅行商问题(TSP)、车辆路径问题(VRP)等。

  • 参数优化问题:如神经网络权重优化、机器学习模型参数调优等。

  • 调度问题:如作业调度、任务调度等。
  • 设计问题:如结构设计、网络设计等。
  • 数据挖掘:特征选择、聚类分析。

五、算法实现

  • 初始化种群:随机生成一组个体,每个个体代表一个可能的解。
  • 评估适应度:根据目标函数评估每个个体的适应度。
  • 选择操作:根据适应度选择较优的个体进行繁殖。
  • 交叉操作:将选择出来的个体配对,通过交叉生成新个体。
  • 变异操作:对新个体进行随机变异,以保持种群的多样性。
  • 替代操作:用新生成的个体替代旧种群中的个体,形成新的种群。
  • 终止条件:当达到预定的终止条件(如最大代数或适应度阈值)时,算法停止。
import numpy as np

def initialize_population(pop_size, gene_length):
    return np.random.randint(2, size=(pop_size, gene_length))

def fitness_function(individual):
    # 示例:适应度函数为个体基因的汉明重量
    return np.sum(individual)

def select(population, fitness_values):
    # 示例:轮盘赌选择
    probabilities = fitness_values / np.sum(fitness_values)
    indices = np.random.choice(range(len(population)), size=len(population), p=probabilities)
    return population[indices]

def crossover(parent1, parent2):
    # 示例:单点交叉
    point = np.random.randint(1, len(parent1))
    child1 = np.concatenate((parent1[:point], parent2[point:]))
    child2 = np.concatenate((parent2[:point], parent1[point:]))
    return child1, child2

def mutate(individual, mutation_rate):
    # 示例:基因突变
    for i in range(len(individual)):
        if np.random.rand() < mutation_rate:
            individual[i] = 1 - individual[i]
    return individual

def genetic_algorithm(population_size, gene_length, num_generations):
    population = initialize_population(population_size, gene_length)
    for _ in range(num_generations):
        fitness_values = np.array([fitness_function(ind) for ind in population])
        population = select(population, fitness_values)
        next_generation = []
        while len(next_generation) < population_size:
            parent1, parent2 = np.random.choice(population, size=2, replace=False)
            child1, child2 = crossover(parent1, parent2)
            child1 = mutate(child1, 0.01)
            child2 = mutate(child2, 0.01)
            next_generation.extend([child1, child2])
        population = np.array(next_generation)
    best_individual = population[np.argmax(fitness_values)]
    return best_individual

# 运行遗传算法
best_solution = genetic_algorithm(100, 10, 50)
print("Best solution:", best_solution)

六、同类型算法对比

        粒子群优化(PSO):基于个体与群体之间的信息共享,收敛速度较快,但容易陷入局部最优。
        蚁群算法(ACO):模拟蚂蚁觅食行为,适用于路径优化问题,但计算量较大。
        模拟退火(SA):借鉴物理退火过程,适用于大规模问题,容易避免局部最优但计算复杂度较高。

遗传算法与其他优化算法(如粒子群优化、模拟退火、蚁群算法等)相比,具有以下特点:

  • 全局搜索能力强:遗传算法通过模拟自然进化过程,具有较强的全局搜索能力。

  • 鲁棒性:遗传算法对初始种群和参数设置不敏感,具有较强的鲁棒性。

  • 适用于多种优化问题:遗传算法适用于连续、离散及混合类型的优化问题。

  • 编码简单:遗传算法的编码方式较为简单,易于实现。

七、多语言代码实现

Java

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;

class Individual {
    List<Integer> genes;
    double fitness;

    public Individual(int geneLength) {
        genes = new ArrayList<>(Collections.nCopies(geneLength, 0));
        Random rand = new Random();
        for (int i = 0; i < geneLength; i++) {
            genes.set(i, rand.nextInt(2)); // Binary genes
        }
    }

    public void calculateFitness() {
        // Example fitness function: sum of genes
        fitness = genes.stream().mapToInt(Integer::intValue).sum();
    }
}

class GeneticAlgorithm {
    private List<Individual> population;
    private int geneLength;
    private int populationSize;
    private double mutationRate;
    private int generations;

    public GeneticAlgorithm(int geneLength, int populationSize, double mutationRate, int generations) {
        this.geneLength = geneLength;
        this.populationSize = populationSize;
        this.mutationRate = mutationRate;
        this.generations = generations;
        population = new ArrayList<>();
        for (int i = 0; i < populationSize; i++) {
            population.add(new Individual(geneLength));
        }
    }

    public void evolve() {
        for (int generation = 0; generation < generations; generation++) {
            evaluateFitness();
            List<Individual> newPopulation = new ArrayList<>();
            while (newPopulation.size() < populationSize) {
                Individual parent1 = selectParent();
                Individual parent2 = selectParent();
                Individual child = crossover(parent1, parent2);
                mutate(child);
                newPopulation.add(child);
            }
            population = newPopulation;
        }
    }

    private void evaluateFitness() {
        population.forEach(Individual::calculateFitness);
    }

    private Individual selectParent() {
        // Simple roulette wheel selection
        double totalFitness = population.stream().mapToDouble(i -> i.fitness).sum();
        double rand = new Random().nextDouble() * totalFitness;
        double sum = 0;
        for (Individual individual : population) {
            sum += individual.fitness;
            if (sum >= rand) return individual;
        }
        return population.get(population.size() - 1); // Should not reach here
    }

    private Individual crossover(Individual parent1, Individual parent2) {
        Individual child = new Individual(geneLength);
        int crossoverPoint = new Random().nextInt(geneLength);
        for (int i = 0; i < geneLength; i++) {
            child.genes.set(i, i < crossoverPoint ? parent1.genes.get(i) : parent2.genes.get(i));
        }
        return child;
    }

    private void mutate(Individual individual) {
        for (int i = 0; i < geneLength; i++) {
            if (new Random().nextDouble() < mutationRate) {
                individual.genes.set(i, 1 - individual.genes.get(i));
            }
        }
    }
}

Python

import random

class Individual:
    def __init__(self, gene_length):
        self.genes = [random.randint(0, 1) for _ in range(gene_length)]
        self.fitness = 0

    def calculate_fitness(self):
        self.fitness = sum(self.genes)

class GeneticAlgorithm:
    def __init__(self, gene_length, population_size, mutation_rate, generations):
        self.gene_length = gene_length
        self.population_size = population_size
        self.mutation_rate = mutation_rate
        self.generations = generations
        self.population = [Individual(gene_length) for _ in range(population_size)]

    def evolve(self):
        for _ in range(self.generations):
            self.evaluate_fitness()
            new_population = []
            while len(new_population) < self.population_size:
                parent1 = self.select_parent()
                parent2 = self.select_parent()
                child = self.crossover(parent1, parent2)
                self.mutate(child)
                new_population.append(child)
            self.population = new_population

    def evaluate_fitness(self):
        for individual in self.population:
            individual.calculate_fitness()

    def select_parent(self):
        total_fitness = sum(individual.fitness for individual in self.population)
        rand = random.uniform(0, total_fitness)
        sum_ = 0
        for individual in self.population:
            sum_ += individual.fitness
            if sum_ >= rand:
                return individual
        return self.population[-1]

    def crossover(self, parent1, parent2):
        crossover_point = random.randint(0, self.gene_length - 1)
        child = Individual(self.gene_length)
        child.genes = parent1.genes[:crossover_point] + parent2.genes[crossover_point:]
        return child

    def mutate(self, individual):
        for i in range(self.gene_length):
            if random.random() < self.mutation_rate:
                individual.genes[i] = 1 - individual.genes[i]

C++

#include <iostream>
#include <vector>
#include <algorithm>
#include <random>

class Individual {
public:
    std::vector<int> genes;
    double fitness;

    Individual(int geneLength) : genes(geneLength), fitness(0) {
        std::random_device rd;
        std::mt19937 gen(rd());
        std::uniform_int_distribution<> dis(0, 1);
        for (int &gene : genes) {
            gene = dis(gen);
        }
    }

    void calculateFitness() {
        fitness = std::accumulate(genes.begin(), genes.end(), 0.0);
    }
};

class GeneticAlgorithm {
    std::vector<Individual> population;
    int geneLength;
    int populationSize;
    double mutationRate;
    int generations;

public:
    GeneticAlgorithm(int geneLength, int populationSize, double mutationRate, int generations)
        : geneLength(geneLength), populationSize(populationSize), mutationRate(mutationRate), generations(generations) {
        for (int i = 0; i < populationSize; ++i) {
            population.emplace_back(geneLength);
        }
    }

    void evolve() {
        for (int generation = 0; generation < generations; ++generation) {
            evaluateFitness();
            std::vector<Individual> newPopulation;
            while (newPopulation.size() < populationSize) {
                Individual parent1 = selectParent();
                Individual parent2 = selectParent();
                Individual child = crossover(parent1, parent2);
                mutate(child);
                newPopulation.push_back(child);
            }
            population = newPopulation;
        }
    }

private:
    void evaluateFitness() {
        for (auto& individual : population) {
            individual.calculateFitness();
        }
    }

    Individual selectParent() {
        double totalFitness = 0;
        for (const auto& individual : population) {
            totalFitness += individual.fitness;
        }
        std::uniform_real_distribution<> dis(0, totalFitness);
        std::random_device rd;
        std::mt19937 gen(rd());
        double rand = dis(gen);
        double sum = 0;
        for (const auto& individual : population) {
            sum += individual.fitness;
            if (sum >= rand) {
                return individual;
            }
        }
        return population.back(); // Should not reach here
    }

    Individual crossover(const Individual& parent1, const Individual& parent2) {
        std::uniform_int_distribution<> dis(0, geneLength - 1);
        std::random_device rd;
        std::mt19937 gen(rd());
        int crossoverPoint = dis(gen);
        Individual child(geneLength);
        std::copy(parent1.genes.begin(), parent1.genes.begin() + crossoverPoint, child.genes.begin());
        std::copy(parent2.genes.begin() + crossoverPoint, parent2.genes.end(), child.genes.begin() + crossoverPoint);
        return child;
    }

    void mutate(Individual& individual) {
        std::uniform_real_distribution<> dis(0, 1);
        std::random_device rd;
        std::mt19937 gen(rd());
        for (int i = 0; i < geneLength; ++i) {
            if (dis(gen) < mutationRate) {
                individual.genes[i] = 1 - individual.genes[i];
            }
        }
    }
};

Go

package main

import (
    "math/rand"
    "time"
)

type Individual struct {
    Genes   []int
    Fitness float64
}

func NewIndividual(geneLength int) *Individual {
    genes := make([]int, geneLength)
    for i := range genes {
        genes[i] = rand.Intn(2)
    }
    return &Individual{Genes: genes}
}

func (ind *Individual) CalculateFitness() {
    sum := 0
    for _, gene := range ind.Genes {
        sum += gene
    }
    ind.Fitness = float64(sum)
}

type GeneticAlgorithm struct {
    Population    []*Individual
    GeneLength    int
    PopulationSize int
    MutationRate  float64
    Generations   int
}

func NewGeneticAlgorithm(geneLength, populationSize int, mutationRate float64, generations int) *GeneticAlgorithm {
    population := make([]*Individual, populationSize)
    for i := 0; i < populationSize; i++ {
        population[i] = NewIndividual(geneLength)
    }
    return &GeneticAlgorithm{
        Population:   population,
        GeneLength:   geneLength,
        PopulationSize: populationSize,
        MutationRate: mutationRate,
        Generations:  generations,
    }
}

func (ga *GeneticAlgorithm) Evolve() {
    for i := 0; i < ga.Generations; i++ {
        ga.EvaluateFitness()
        newPopulation := make([]*Individual, ga.PopulationSize)
        for j := 0; j < ga.PopulationSize; j++ {
            parent1 := ga.SelectParent()
            parent2 := ga.SelectParent()
            child := ga.Crossover(parent1, parent2)
            ga.Mutate(child)
            newPopulation[j] = child
        }
        ga.Population = newPopulation
    }
}

func (ga *GeneticAlgorithm) EvaluateFitness() {
    for _, ind := range ga.Population {
        ind.CalculateFitness()
    }
}

func (ga *GeneticAlgorithm) SelectParent() *Individual {
    totalFitness := 0.0
    for _, ind := range ga.Population {
        totalFitness += ind.Fitness
    }
    randValue := rand.Float64() * totalFitness
    sum := 0.0
    for _, ind := range ga.Population {
        sum += ind.Fitness
        if sum >= randValue {
            return ind
        }
    }
    return ga.Population[len(ga.Population)-1] // Should not reach here
}

func (ga *GeneticAlgorithm) Crossover(parent1, parent2 *Individual) *Individual {
    crossoverPoint := rand.Intn(ga.GeneLength)
    child := NewIndividual(ga.GeneLength)
    copy(child.Genes[:crossoverPoint], parent1.Genes[:crossoverPoint])
    copy(child.Genes[crossoverPoint:], parent2.Genes[crossoverPoint:])
    return child
}

func (ga *GeneticAlgorithm) Mutate(ind *Individual) {
    for i := range ind.Genes {
        if rand.Float64() < ga.MutationRate {
            ind.Genes[i] = 1 - ind.Genes[i]
        }
    }
}

func main() {
    rand.Seed(time.Now().UnixNano())
    ga := NewGeneticAlgorithm(10, 100, 0.01, 50)
    ga.Evolve()
}

八、应用场景的整个代码框架

用遗传算法进行超参数调优,可构建如下的项目结构:

project/
    ├── main.py
    ├── ga.py
    ├── objective.py
    ├── utils.py
    ├── requirements.txt
    └── README.md

main.py

from ga import GeneticAlgorithm
from objective import objective_function

def main():
    ga = GeneticAlgorithm(objective_function, pop_size=100, gene_length=5)
    best_solution, best_fitness = ga.run(generations=200)
    print(f"Optimal parameters: {best_solution}, Maximum fitness: {best_fitness}")

if __name__ == '__main__':
    main()

ga.py

import numpy as np
import random

class GeneticAlgorithm:
    def __init__(self, objective_function, pop_size=50, gene_length=10, mutation_rate=0.01):
        self.objective_function = objective_function
        self.pop_size = pop_size
        self.gene_length = gene_length
        self.mutation_rate = mutation_rate
        self.population = self.initialize_population()

    def initialize_population(self):
        return [np.random.rand(self.gene_length) for _ in range(self.pop_size)]

    def calculate_fitness(self):
        return [self.objective_function(ind) for ind in self.population]

    def selection(self, fitness):
        idx = np.random.choice(range(len(self.population)), size=len(self.population), p=fitness/np.sum(fitness))
        return [self.population[i] for i in idx]

    def crossover(self, parent1, parent2):
        point = random.randint(1, len(parent1)-1)
        return np.concatenate((parent1[:point], parent2[point:]))

    def mutate(self, individual):
        for i in range(len(individual)):
            if random.random() < self.mutation_rate:
                individual[i] = random.random()
        return individual

    def run(self, generations):
        for generation in range(generations):
            fitness = self.calculate_fitness()
            self.population = self.selection(fitness)
            next_population = []

            while len(next_population) < self.pop_size:
                parent1, parent2 = random.sample(self.population, 2)
                child = self.crossover(parent1, parent2)
                child = self.mutate(child)
                next_population.append(child)

            self.population = next_population
        
        best_individual = self.population[np.argmax(self.calculate_fitness())]
        return best_individual, self.objective_function(best_individual)

objective.py

def objective_function(x):
    return -(x[0]**2 + x[1]**2) + 10  # Example objective function

utils.py

import numpy as np
import random
import matplotlib.pyplot as plt

def set_random_seed(seed):
    """
    Set the random seed for reproducibility.
    
    Parameters:
        seed (int): The seed value to use.
    """
    random.seed(seed)
    np.random.seed(seed)

def initialize_population(pop_size, gene_length):
    """
    Initialize a population with random values.
    
    Parameters:
        pop_size (int): The number of individuals in the population.
        gene_length (int): The length of each individual (chromosome).
    
    Returns:
        List[np.ndarray]: A list containing the initialized population.
    """
    return [np.random.rand(gene_length) for _ in range(pop_size)]

def plot_fitness_progress(fitness_history):
    """
    Plot the progress of fitness over generations.
    
    Parameters:
        fitness_history (List[float]): A list of fitness values for each generation.
    """
    plt.figure(figsize=(10, 5))
    plt.plot(fitness_history, label='Fitness', color='blue')
    plt.title('Fitness Progress Over Generations')
    plt.xlabel('Generation')
    plt.ylabel('Fitness')
    plt.legend()
    plt.grid()
    plt.show()

def save_results_to_file(results, filename):
    """
    Save the results to a text file.
    
    Parameters:
        results (dict): The results to save (e.g., best solution, fitness).
        filename (str): The name of the file where results will be saved.
    """
    with open(filename, 'w') as f:
        for key, value in results.items():

requirements.txt

numpy>=1.21.0
matplotlib>=3.4.0
scikit-learn>=0.24.0  # 如果需要用于机器学习相关的库
pandas>=1.2.0  # 如果你想处理数据集

        遗传算法是一种灵活强大的优化工具,适用于多个领域。通过不断演化和选择,可以找到较优的解。在具体实现时,需综合考虑问题的实际需求,合理设计适应度函数和遗传操作。由于遗传算法的随机性,可能需要多次运行以找到较优解。希望这篇博文能帮助你更好地理解和实现遗传算法。


http://www.kler.cn/news/316635.html

相关文章:

  • go语言基础入门(一)
  • 安全带检测系统源码分享
  • ArcGIS Pro SDK (十六)公共设施网络 2 网络图
  • MySQL篇(高级字符串函数/正则表达式)(持续更新迭代)
  • Web端云剪辑解决方案,BS架构私有化部署,安全可控
  • 【ARM】A64指令介绍及内存屏障和寄存器
  • 借用连接1-怎么从目标数据源借用连接
  • 【题解-力扣189. 轮转数组(java实现O(1)空间要求)】
  • Python3爬虫教程-HTTP基本原理
  • 数据结构--单链表创建、增删改查功能以及与结构体合用
  • Java 入门指南:JVM(Java虚拟机)—— 双亲委派模型(Parent Delegation Model)
  • 2024短剧系统开发,付费短剧小程序app源码教程,分销功能讲解搭建上线
  • 【UI自动化】前言
  • 服务器相关问题
  • 机器学习及其应用领域【金融领域】
  • css 控制虚线刻度尺寸
  • 【手写数据库内核组件】1001词法分析器,语言被程序识别的第一步,将语句分解为最小词根token
  • Qt 模型视图(二):模型类QAbstractItemModel
  • 可智能生成刺绣图案!武汉纺织大学可视计算与数字纺织团队发布首个多缝线刺绣生成对抗网络模型,被顶级期刊 TVCG 录用
  • 后端开发刷题 | 最长无重复子数组
  • ArcGIS Pro SDK (十六)公共设施网络 1 网络管理
  • 人工智能与机器学习原理精解【22】
  • 深度学习-16-深入理解BERT基于本地数据微调训练文本分类模型的流程
  • SQL语法学习指南
  • 9月23日
  • Shiro rememberMe反序列化漏洞(Shiro-550) 靶场攻略
  • 水下攻防面试题
  • 『功能项目』QFrameWork拾取道具UGUI【69】
  • 深度学习速通系列:什么是文本数据标注
  • 《SmartX ELF 虚拟化核心功能集》发布,详解 80+ 功能特性和 6 例金融实践