YOLOX预测图片是无法保存
添加红色这一句就行
parser.add_argument(
"--save_result",
action="store_true",
default="True",
help="whether to save the inference result of image/video",
)
预测文件如下demo.py
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. #用来预测的 import argparse import os import time from loguru import logger import cv2 import torch import sys sys.path.append(r'E:\python_code\YOLOX-0.2.0') from yolox.data.data_augment import ValTransform from yolox.data.datasets import VOC_CLASSES from yolox.exp import get_exp from yolox.utils import fuse_model, get_model_info, postprocess, vis IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"] def make_parser(): parser = argparse.ArgumentParser("YOLOX Demo!") parser.add_argument( "-do","--demo", default="image", help="demo type, eg. image, video and webcam" ) parser.add_argument("-expn", "--experiment-name", type=str, default=None) parser.add_argument("-n", "--name", type=str, default=None, help="model name") parser.add_argument( "--path", default="./assets/mask.jpg", help="path to images or video" ) parser.add_argument("--camid", type=int, default=0, help="webcam demo camera id") parser.add_argument( "--save_result", action="store_true", default="True", help="whether to save the inference result of image/video", ) # exp file parser.add_argument( "-f", "--exp_file", default=r"E:\python_code\YOLOX-0.2.0\exps\example\yolox_voc\yolox_voc_s.py", type=str, help="pls input your experiment description file", ) parser.add_argument("-c", "--ckpt", default=r"E:\python_code\YOLOX-0.2.0\YOLOX_outputs\yolox_voc_s\best_ckpt.pth", type=str, help="ckpt for eval") parser.add_argument( "--device", default="gpu", type=str, help="device to run our model, can either be cpu or gpu", ) parser.add_argument("--conf", default=0.3, type=float, help="test conf") parser.add_argument("--nms", default=0.45, type=float, help="test nms threshold") parser.add_argument("--tsize", default=640, type=int, help="test img size") parser.add_argument( "--fp16", dest="fp16", default=False, action="store_true", help="Adopting mix precision evaluating.", ) parser.add_argument( "--legacy", dest="legacy", default=False, action="store_true", help="To be compatible with older versions", ) parser.add_argument( "--fuse", dest="fuse", default=False, action="store_true", help="Fuse conv and bn for testing.", ) parser.add_argument( "--trt", dest="trt", default=False, action="store_true", help="Using TensorRT model for testing.", ) return parser def get_image_list(path): image_names = [] for maindir, subdir, file_name_list in os.walk(path): for filename in file_name_list: apath = os.path.join(maindir, filename) ext = os.path.splitext(apath)[1] if ext in IMAGE_EXT: image_names.append(apath) return image_names class Predictor(object): def __init__( self, model, exp, cls_names=VOC_CLASSES, trt_file=None, decoder=None, device="cpu", fp16=False, legacy=False, ): self.model = model self.cls_names = cls_names self.decoder = decoder self.num_classes = exp.num_classes self.confthre = exp.test_conf self.nmsthre = exp.nmsthre self.test_size = exp.test_size self.device = device self.fp16 = fp16 self.preproc = ValTransform(legacy=legacy) if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, exp.test_size[0], exp.test_size[1]).cuda() self.model(x) self.model = model_trt def inference(self, img): img_info = {"id": 0} if isinstance(img, str): img_info["file_name"] = os.path.basename(img) img = cv2.imread(img) else: img_info["file_name"] = None height, width = img.shape[:2] img_info["height"] = height img_info["width"] = width img_info["raw_img"] = img ratio = min(self.test_size[0] / img.shape[0], self.test_size[1] / img.shape[1]) img_info["ratio"] = ratio img, _ = self.preproc(img, None, self.test_size) img = torch.from_numpy(img).unsqueeze(0) img = img.float() if self.device == "gpu": img = img.cuda() if self.fp16: img = img.half() # to FP16 with torch.no_grad(): t0 = time.time() outputs = self.model(img) if self.decoder is not None: outputs = self.decoder(outputs, dtype=outputs.type()) outputs = postprocess( outputs, self.num_classes, self.confthre, self.nmsthre, class_agnostic=True ) logger.info("Infer time: {:.4f}s".format(time.time() - t0)) return outputs, img_info def visual(self, output, img_info, cls_conf=0.35): ratio = img_info["ratio"] img = img_info["raw_img"] if output is None: return img output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize bboxes /= ratio cls = output[:, 6] scores = output[:, 4] * output[:, 5] vis_res = vis(img, bboxes, scores, cls, cls_conf, self.cls_names) return vis_res def image_demo(predictor, vis_folder, path, current_time, save_result): if os.path.isdir(path): files = get_image_list(path) else: files = [path] files.sort() for image_name in files: outputs, img_info = predictor.inference(image_name) result_image = predictor.visual(outputs[0], img_info, predictor.confthre) if save_result: save_folder = os.path.join( vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time) ) os.makedirs(save_folder, exist_ok=True) save_file_name = os.path.join(save_folder, os.path.basename(image_name)) logger.info("Saving detection result in {}".format(save_file_name)) cv2.imwrite(save_file_name, result_image) ch = cv2.waitKey(0) if ch == 27 or ch == ord("q") or ch == ord("Q"): break def imageflow_demo(predictor, vis_folder, current_time, args): cap = cv2.VideoCapture(args.path if args.demo == "video" else args.camid) width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float fps = cap.get(cv2.CAP_PROP_FPS) save_folder = os.path.join( vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time) ) os.makedirs(save_folder, exist_ok=True) if args.demo == "video": save_path = os.path.join(save_folder, args.path.split("/")[-1]) else: save_path = os.path.join(save_folder, "camera.mp4") logger.info(f"video save_path is {save_path}") vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)) ) while True: ret_val, frame = cap.read() if ret_val: outputs, img_info = predictor.inference(frame) result_frame = predictor.visual(outputs[0], img_info, predictor.confthre) if args.save_result: vid_writer.write(result_frame) ch = cv2.waitKey(1) if ch == 27 or ch == ord("q") or ch == ord("Q"): break else: break def main(exp, args): if not args.experiment_name: args.experiment_name = exp.exp_name file_name = os.path.join(exp.output_dir, args.experiment_name) os.makedirs(file_name, exist_ok=True) vis_folder = None if args.save_result: vis_folder = os.path.join(file_name, "vis_res") os.makedirs(vis_folder, exist_ok=True) if args.trt: args.device = "gpu" logger.info("Args: {}".format(args)) if args.conf is not None: exp.test_conf = args.conf if args.nms is not None: exp.nmsthre = args.nms if args.tsize is not None: exp.test_size = (args.tsize, args.tsize) model = exp.get_model() logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size))) if args.device == "gpu": model.cuda() if args.fp16: model.half() # to FP16 model.eval() if not args.trt: if args.ckpt is None: ckpt_file = os.path.join(file_name, "best_ckpt.pth") else: ckpt_file = args.ckpt logger.info("loading checkpoint") ckpt = torch.load(ckpt_file, map_location="cpu") # load the model state dict model.load_state_dict(ckpt["model"]) logger.info("loaded checkpoint done.") if args.fuse: logger.info("\tFusing model...") model = fuse_model(model) if args.trt: assert not args.fuse, "TensorRT model is not support model fusing!" trt_file = os.path.join(file_name, "model_trt.pth") assert os.path.exists( trt_file ), "TensorRT model is not found!\n Run python3 tools/trt.py first!" model.head.decode_in_inference = False decoder = model.head.decode_outputs logger.info("Using TensorRT to inference") else: trt_file = None decoder = None predictor = Predictor( model, exp, VOC_CLASSES, trt_file, decoder, args.device, args.fp16, args.legacy, ) current_time = time.localtime() if args.demo == "image": image_demo(predictor, vis_folder, args.path, current_time, args.save_result) elif args.demo == "video" or args.demo == "webcam": imageflow_demo(predictor, vis_folder, current_time, args) if __name__ == "__main__": args = make_parser().parse_args() exp = get_exp(args.exp_file, args.name) main(exp, args)
还是不行的话试试在终端运行
python demo.py --save_result