当前位置: 首页 > article >正文

大模型培训讲师叶梓:Llama Factory 微调模型实战分享提纲

LLaMA-Factory ——一个高效、易用的大模型训练与微调平台。它支持多种预训练模型,并且提供了丰富的训练算法,包括增量预训练、多模态指令监督微调、奖励模型训练等。

LLaMA-Factory的优势在于其简单易用的界面和强大的功能。用户可以在不编写任何代码的情况下,在本地完成上百种预训练模型的微调。

它支持多种运算精度,包括16bit全参数微调、冻结微调、LoRA微调,以及基于AQLM/AWQ/GPTQ等技术的QLoRA微调。

LLaMA-Factory还提供了多种优化算法,以及加速算子。这些工具和算法的结合,使得LLaMA-Factory成为一个功能全面、性能优异的微调平台。

此外,LLaMA-Factory还提供了实验面板,如LlamaBoard、TensorBoard等,帮助用户更好地监控和分析模型训练过程。

通过LLaMA-Factory,用户可以实现大模型的微调,以适应特定任务或领域,提高模型在特定场景下的表现和效果。它的易用性和高效性,使得即使是没有深厚机器学习背景的用户也能够轻松上手,进行大模型的微调工作。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具。实战专家1小时讲解让您轻松上手,学习如何使用 Llama Factory 微调模型。

评论留言“参加”或扫描微信备注“参加”,即可参加线上直播分享,叶老师亲自指导,互动沟通,全面掌握Llama Factory。关注享粉丝福利,限时免费录播讲解。

Llama Factory 微调模型实战分享内容

1、项目介绍

LLaMA Factory是一个用于大型语言模型(LLM)训练与微调的平台。

支持多种模型,如LLaMA、LLaVA、Mistral等。

提供多种训练算法,包括增量预训练、指令监督微调等。

支持多种运算精度和优化算法。

2、特性概览

模型种类:支持上百种预训练模型。

训练算法:包括增量预训练、多模态指令监督微调等。

运算精度:支持16比特全参数微调、冻结微调、LoRA微调等。

优化算法:包括GaLore、BAdam、DoRA等。

加速算子:如FlashAttention-2。

推理引擎:支持Transformers和vLLM。

实验面板:LlamaBoard等。

3、安装与配置

环境准备:包括硬件环境校验、CUDA和Pytorch环境安装。

安装步骤:通过git克隆仓库,使用pip安装。

模型下载:提供模型下载指南和使用说明。

4、训练方法

预训练(Pre-training):在大型通用数据集上进行无监督学习。

监督微调(Supervised Fine-Tuning):使用有标签数据集进行训练。

训练配置:提供训练配置文件示例。

5、数据集准备

数据集格式:支持alpaca和sharegpt数据格式。

数据集构建:指导如何构建自定义数据集。

6、微调与推理

微调流程:详细介绍微调步骤和参数设置。

微调效果评估:介绍如何评估微调效果。

推理引擎:介绍如何使用推理引擎进行模型推理。

API Server:指导如何启动API Server并调用模型。

叶梓老师介绍:

叶梓,工学博士,高级工程师。现某大型上市企业资深技术专家。

上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。毕业后即进入某大型软件上市公司从事大数据、人工智能等技术相关工作,曾先后作为技术经理或总工程师,负责大型信息平台、市级信息平台的建设工作,并参与省级信息平台的建设;主持制定了包括多份信息化工程标准。在大数据应用、人工智能等方面都有着丰富的经验。

🌟 掌握未来AI技术,从Llama Factory开始!

🚀 深度学习系列分享课程,探索AI的无限可能!多精彩的深度学习系列分享课程:

一、微调技术的发展

1、微调基础理论:预训练和微调阶段的重要性

2、微调策略:LoRA、适配器调整、前缀调整等方法

3、参数高效微调(PEFT):Prompt Tuning、Prefix Tuning、LoRA等

4、实测效果比较好的freeze

二、Attention机制进展

1、Attention机制的起源和发展:从RNN到Transformer的自注意力机制

2、不同类型的Attention:软注意力与硬注意力、聚焦式与显著性注意力

3、多头自注意力机制

4、Flash Attention:高效注意力机制的突破,提高训练速度和内存效率

5、PagedAttention:在处理长序列、大模型和复杂的解码算法时,性能提升显著。

三、用于大模型微调的强化学习方法

1、PPO (Proximal Policy Optimization):一种基于策略梯度的强化学习算法,通过限制策略更新的幅度来保持学习过程的稳定性。

2、DPO (Direct Preference Optimization):DPO是一种直接优化用户或专家偏好的方法,它不依赖于传统的奖励建模或强化学习。

3、KTO (Kahneman-Tversky Optimization):KTO是一种基于前景理论的优化方法,它利用人类对损失的敏感性来优化模型。

……


http://www.kler.cn/a/318098.html

相关文章:

  • Zotero 6.0 安装包及安装教程
  • 前端垂直居中的多种实现方式及应用分析
  • 【vue2.0入门】vue基本语法
  • 每日一练:二分查找-搜索插入位置
  • 01-Ajax入门与axios使用、URL知识
  • C# 委托与匿名方法
  • 用Swift实现验证回文字符串
  • 空栈压数 - 华为OD统一考试(E卷)
  • 一.python入门
  • Spring Boot框架在心理教育辅导系统中的应用
  • HTTP协议详解
  • javascript:检查JavaScript对象属性是否存在
  • kubernets部署prometheus监控
  • MySQL:用户管理
  • VSCode使用Clangd
  • 《程序猿之设计模式实战 · 适配器模式》
  • 云计算和虚拟化技术 背诵
  • Django一分钟:DRF快速实现JWT认证与RBAC权限校验
  • 网络层协议——IP
  • 从入门到精通:QT 100个关键技术关键词
  • node.js 版本管理
  • Vue轮询请求接口
  • 语音合成(自然、非自然)
  • Maven中依赖配置
  • WRFDA保姆级安装教程
  • 聊一下cookie,session,token的区别