当前位置: 首页 > article >正文

Hive企业级调优[8]—— 其他优化

目录

 其他优化

CBO优化

 优化说明

 优化案例

 谓词下推

 优化说明

 优化案例

 矢量化查询

Fetch抓取

 本地模式

优化说明

 优化案例

并行执行

 严格模式


 其他优化

CBO优化

 优化说明

CBO(Cost Based Optimizer),即基于成本的优化。在Hive中,成本模型考虑到了数据的行数、CPU、本地IO、HDFS IO、网络IO等因素。Hive会计算同一SQL语句的不同执行计划的成本,并选择成本最低的执行计划。目前,CBO在Hive的MR引擎下主要用于join的优化,如多表join的join顺序。

相关参数:

-- 是否启用CBO优化
set hive.cbo.enable=true;
 优化案例

1)示例SQL语句

hive (default)> select
    >     *
    > from order_detail od
    > join product_info product on od.product_id=product.id
    > join province_info province on od.province_id=province.id;

2)关闭CBO优化

-- 关闭CBO优化
set hive.cbo.enable=false;

-- 为了测试效果更加直观,关闭Map Join自动转换
set hive.auto.convert.join=false;

3)开启CBO优化

-- 开启CBO优化
set hive.cbo.enable=true;

-- 为了测试效果更加直观,关闭Map Join自动转换
set hive.auto.convert.join=false;

4)总结

根据上述案例可以看出,CBO优化对于执行计划中join顺序有显著影响。它将province_info的join顺序提前,因为province_info的数据量较小,这样做可以使中间结果的数据量减小,从而降低整体计算任务的数据量,即减小计算成本。

 谓词下推

 优化说明

谓词下推(Predicate Pushdown)是指尽量将过滤操作前移,以减少后续计算步骤的数据量。

相关参数:

-- 是否启动谓词下推优化
set hive.optimize.ppd = true;

需要注意的是,CBO优化也会完成一部分的谓词下推优化工作,因为在执行计划中,谓词越靠前,整个计划的计算成本就越低。

 优化案例

1)示例SQL语句

hive (default)> select
    >     *
    > from order_detail
    > join province_info
    > where order_detail.province_id='2';

2)关闭谓词下推优化

-- 是否启动谓词下推优化
set hive.optimize.ppd = false;

-- 为了测试效果更加直观,关闭CBO优化
set hive.cbo.enable=false;

3)开启谓词下推优化

-- 是否启动谓词下推优化
set hive.optimize.ppd = true;

-- 为了测试效果更加直观,关闭CBO优化
set hive.cbo.enable=false;
 矢量化查询

Hive的矢量化查询优化依赖于CPU的矢量化计算能力,可以极大地提高某些典型查询场景(如scans, filters, aggregates, and joins)下的CPU使用效率。

相关参数:

set hive.vectorized.execution.enabled=true;

若执行计划中出现“Execution mode: vectorized”字样,则表明使用了矢量化计算。

官网参考链接: Vectorized Query Execution - Apache Hive - Apache Software Foundation

Fetch抓取

Fetch抓取是指,在某些情况下,Hive可以不必使用MapReduce计算。例如:select * from emp; 在这种情况下,Hive可以简单地读取emp对应的存储目录下的文件,然后输出查询结果到控制台。

相关参数:

-- 是否在特定场景转换为Fetch任务
-- 设置为none表示不转换
-- 设置为minimal表示支持select *,分区字段过滤,Limit等
-- 设置为more表示支持select 任意字段, 包括函数,过滤,和limit等
set hive.fetch.task.conversion=more;

 本地模式

优化说明

大多数的Hadoop Job需要Hadoop提供的完整可扩展性来处理大数据集。然而,有时Hive的输入数据量很小。在这种情况下,为查询触发执行任务消耗的时间可能比实际Job的执行时间更长。对于这种情况,Hive可以通过本地模式在单台机器上处理所有任务,从而缩短执行时间。

相关参数:

-- 开启自动转换为本地模式
set hive.exec.mode.local.auto=true;

-- 设置Local MapReduce的最大输入数据量,当输入数据量小于这个值时采用Local MapReduce的方式,默认为134217728(即128MB)
set hive.exec.mode.local.auto.inputbytes.max=50000000;

-- 设置Local MapReduce的最大输入文件个数,当输入文件个数小于这个值时采用Local MapReduce的方式,默认为4
set hive.exec.mode.local.auto.input.files.max=10;
 优化案例

1)示例SQL语句

hive (default)> select
    >     count(*)
    > from product_info
    > group by category_id;

2)关闭本地模式

set hive.exec.mode.local.auto=false;

3)开启本地模式

set hive.exec.mode.local.auto=true;
并行执行

Hive会将一个SQL语句转化为一个或多个Stage,每个Stage对应一个MR Job。默认情况下,Hive同时只会执行一个Stage。但是,某些SQL语句可能包含多个Stage,而这些Stage之间并非完全依赖,因此可以并行执行。

相关参数:

-- 启用并行执行优化
set hive.exec.parallel=true;

-- 同一个SQL允许的最大并行度,默认为8
set hive.exec.parallel.thread.number=8;
 严格模式

Hive可以通过设置某些参数来防止危险的操作:

  1. 分区表不使用分区过滤

     

    hive.strict.checks.no.partition.filter设置为true时,对于分区表,除非WHERE语句中含有分区字段过滤条件来限制范围,否则不允许执行。这样可以防止扫描所有分区,因为分区表通常数据量很大且增长迅速。

  2. 使用ORDER BY没有LIMIT过滤

     

    hive.strict.checks.orderby.no.limit设置为true时,对于使用了ORDER BY语句的查询,要求必须使用LIMIT语句。这是因为ORDER BY为了执行排序过程会将所有结果数据发送到同一个Reduce中处理,使用LIMIT可以在数据进入Reduce之前减少部分数据。

  3. 笛卡尔积

     

    hive.strict.checks.cartesian.product设置为true时,会限制笛卡尔积的查询。对于关系型数据库熟悉的用户可能期望在执行JOIN查询时不使用ON语句而是使用WHERE语句,这样关系数据库的执行优化器可以高效地将WHERE语句转化为ON语句。然而,Hive不会执行这种优化,如果表足够大,查询可能会变得不可控。


http://www.kler.cn/a/320154.html

相关文章:

  • Sprint Boot教程之五十八:动态启动/停止 Kafka 监听器
  • C语言:-三子棋游戏代码:分支-循环-数组-函数集合
  • Java中的并发工具类:让多线程编程更轻松
  • [0405].第05节:搭建Redis主从架构
  • 查看APK的公钥,MD5信息
  • [读书日志]8051软核处理器设计实战(基于FPGA)第七篇:8051软核处理器的测试(verilog+C)
  • LiveNVR监控流媒体Onvif/RTSP功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大
  • 鼠标经过el-dropdown组件上会出现一个蓝色的小框
  • C++——编写一个函数,求一个字符串的长度。在main函数中输入字符串,并输出其长度。用指针方法处理。
  • Lumos学习王佩丰Excel第十五讲:条件格式与公式
  • 使用Scikit-learn实现支持向量机分类器
  • vscode 顶部 Command Center,minimap
  • 深度学习:(六)激活函数的选择与介绍
  • excel导出图片---HSSFWorkbook--SXSSFWorkbook
  • RuoYi是如何实现图片的服务器上传和地址回显
  • 中伟视界:AI算法如何精准识别井下与传送带上堆料,提升矿山安全生产效率,减少事故风险
  • Windows (rust) vulkan 画一个三角形: 窗口创建与渲染初始化
  • Python 在PDF中插入文本超链接和图片超链接 (详解)
  • 怎么制作线上报名表_解锁报名新体验
  • Skyvern:基于LLM和CV的开源RPA
  • Cookie详情(含前端和后端相关示例)
  • mysql root密码重置
  • js冒泡排序
  • 828华为云征文|华为云Flexus X实例Windows Server 2019安装护卫神防火墙——为企业运维安全发挥重要作用!!!
  • vue2加载本地html文件
  • SQL - 进阶语法(二)约束