当前位置: 首页 > article >正文

【数据结构】栈和队列(Stack Queue)

引言

在对顺序表,链表有了充分的理解之后,现在让我们学习栈和队列!!!

【链表】    👈链表

【顺序表】👈顺序表

目录

💯栈

1.栈的概念及结构

2.栈的实现

⭐初始化栈

⭐入栈

⭐出栈

⭐获取栈顶元素

⭐获取栈中有效元素个数

⭐检测栈是否为空

⭐销毁栈

✨实现结果

💯队列

1.队列的概念及结构

2.列队的实现 

⭐初始化列队

⭐队尾入列队

⭐队尾出列队

⭐获取队列头部元素

⭐获取队列中有效元素个数

⭐检测队列是否为空 

⭐销毁列队

✨实现结果


💯栈

1.栈的概念及结构

  • 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
  • 压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶
  • 出栈:栈的删除操作叫做出栈。出数据也在栈顶

先进后出 (Last In First Out

让我们思考下面2道题目,加深对栈的理解: 

2.栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

// 下面是定长的静态栈的结构,实际中一般不实用,所以我们主要实现下面的支持动态增长的栈
typedef int STDataType;
#define N 10
typedef struct Stack
{
    STDataType _a[N];
    int _top; // 栈顶
}Stack;
// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
    STDataType* _a;
    int _top; // 栈顶
    int _capacity; // 容量
}Stack;

// 初始化栈
void StackInit(Stack* ps);

// 入栈
void StackPush(Stack* ps, STDataType data);

// 出栈
void StackPop(Stack* ps);

// 获取栈顶元素
STDataType StackTop(Stack* ps);

// 获取栈中有效元素个数
int StackSize(Stack* ps);

// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool StackEmpty(Stack* ps);

// 销毁栈
void StackDestroy(Stack* ps);
⭐初始化栈
typedef int STDateType;
typedef struct Stack
{
	STDateType* a;
	int top;
	int capacity;
}ST;
⭐入栈
void StackPush(ST* p, STDateType x)
{
	if (p->top == p->capacity)
	{
		STDateType* temp = (STDateType*)realloc(p->a, p->capacity * 2*sizeof(STDateType));
		if (temp==NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}
		else
		{
			p->capacity *= 2;
			p->a = temp;
		}
	}
	p->a[p->top] = x;
	p->top++;
}
⭐出栈
void StackPoP(ST* p)
{
	assert(p);
	assert(p->top>0);
	p->top--;
}
⭐获取栈顶元素
STDateType StackTop(ST* p)
{
	assert(p);
	assert(p->top > 0);
	return p->a[p->top - 1];
}
⭐获取栈中有效元素个数
int Size(ST* p)
{
	return p->top;
}
⭐检测栈是否为空

        如果为空返回非零结果,如果不为空返回0

bool StackEmpty(ST* p)
{
	return p->top == 0;
}
⭐销毁栈
void StackDestory(ST* p)
{
	assert(p);
	free(p->a);
	p->a = NULL;
	p->capacity = p->top = 0;
}
实现结果
int main()
{
	ST p;
	StackInit(&p);
	StackPush(&p, 1);
	StackPush(&p, 2);
	StackPush(&p, 3);
	StackPush(&p, 4);
	StackPush(&p, 5);
	StackPush(&p, 6);

	while (!StackEmpty(&p))
	{
		printf("%d ", StackTop(&p));
		StackPoP(&p);
	}
	StackDestory(&p);
	return 0;
}


💯队列

1.队列的概念及结构

  • 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out)
  • 入队列:进行插入操作的一端称为队尾
  • 出队列:进行删除操作的一端称为队头

2.列队的实现 

队列的实现方式包括数组和链表。常见的队列实现方式有:

  1. 数组实现:使用一维数组存储元素,通过头指针和尾指针分别指向队头和队尾实现入队和出队操作。
  2. 链表实现:每个元素使用一个节点存储,通过指针链接实现队列,入队操作在链表末尾插入新节点,出队操作删除链表头节点。                                  从head端删除元素,从tail端插入元素
  • 队列也可以数组和链表的结构实现,使用链表的结构实现更优一些。
  • 因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。(需要将后面的元素集体前移)
// 链式结构:表示队列
typedef struct QListNode
{
    struct QListNode* _pNext;
    QDataType _data;
}QNode;

// 队列的结构
typedef struct Queue
{
    QNode* _front;
    QNode* _rear;
}Queue;

// 初始化队列
void QueueInit(Queue* q);

// 队尾入队列
void QueuePush(Queue* q, QDataType data);

// 队头出队列
void QueuePop(Queue* q);

// 获取队列头部元素
QDataType QueueFront(Queue* q);

// 获取队列中有效元素个数
int QueueSize(Queue* q);

// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueEmpty(Queue* q);

// 销毁队列
void QueueDestroy(Queue* q);
⭐初始化列队
void QueueInit(Queue* pq)
{
	assert(pq);

	pq->head = pq->tail = NULL;
	pq->size = 0;
}
⭐队尾入列队
void QueuePush(Queue* pq, QDatatype x)
{
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return;
	}
	newnode->data = x;
	newnode->next = NULL;

	if (pq->head == NULL)
	{
		assert(pq->tail == NULL);

		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}

	pq->size++;
}
⭐队尾出列队
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->head != NULL);

	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}

	pq->size--;
}
⭐获取队列头部元素
QDatatype QueueFront(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->head->data;
}
⭐获取队列中有效元素个数
int QueueSize(Queue* pq)
{
	assert(pq);

	return pq->size;
}
⭐检测队列是否为空 

        如果为空返回非零结果,如果不为空返回0

bool QueueEmpty(Queue* pq)
{
	assert(pq);

	return pq->size == 0;
}
⭐销毁列队
void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}

	pq->head = pq->tail = NULL;
	pq->size = 0;
}
实现结果
int main()
{
	Queue p;
	QueueInit(&p);
	QueuePush(&p, 1);
	QueuePush(&p, 2);
	QueuePush(&p, 3);
	QueuePush(&p, 4);
	QueuePush(&p, 5);
	while (!QueueEmpty(&p))
	{
		printf("%d ",QueueFront(& p));
		QueuePop(&p);
	}
	QueueDestory(&p);
	return 0;
}


                                 💝💝💝以上就是本文章的全部内容啦~💝💝💝

感谢你看到最后,点个赞再走吧!

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。✨✨ 欢迎订阅本专栏 ✨✨


http://www.kler.cn/a/320753.html

相关文章:

  • 正则表达式语法详解(python)
  • ARM 汇编指令
  • 树莓派镜像 DIY 制作
  • Typescript中的keyof类型操作符详解
  • Javascript高级—函数柯西化
  • web——upload-labs——第三关——后缀黑名单绕过
  • 统信服务器操作系统ade版【iostat】命令详解
  • LeetCode 136. 只出现一次的数字
  • 三,MyBatis-Plus 的各种查询的“超详细说明”,比如(等值查询,范围查询,模糊查询...)
  • Kafka集群扩容(新增一台kafka节点)
  • Could not load library libcudnn_cnn_train.so.8 问题及(非常简单)解决方案
  • 线阵相机的参数选型计算
  • vue.config.js devServer中changeOrigin的作用
  • VS Code实现flutter多语言(官方推荐Intl)
  • Golang | Leetcode Golang题解之第421题数组中两个数的最大异或值
  • 嵌入式硬件工程师与嵌入式软件工程师的区别(详细版)
  • 关于 ReentrantLock 中锁 lock() 和解锁 unlock() 的底层原理浅析
  • OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【文件系统】上
  • NLP 序列标注任务核心梳理
  • 《C++中的神秘利器——类型萃取(Type Traits)深度解析》
  • Android ImageView支持每个角的不同半径
  • LVS-DR实战案例,实现四层负载均衡
  • 利用探空站数据(怀俄明和IGRA)和ERA5计算ZTD、ZHD和ZWD
  • 什么是 IP 地址信誉?5 种改进方法
  • 广播IP与共享IP的关系
  • hadoop大数据平台操作笔记(下)