当前位置: 首页 > article >正文

[AI问答] Auto-sklearn和Auto-Keras对比

Auto-sklearn和Auto-Keras都是自动机器学习库,它们的目标都是自动化地搜索和选择最佳的机器学习模型和超参数。Auto-sklearn是基于scikit-learn,而Auto-Keras是基于Keras。

以下是Auto-sklearn和Auto-Keras的主要区别:

架构差异:Auto-Keras是在Keras之上构建的,它提供了更高级的API来简化模型的构建。而Auto-sklearn则是在scikit-learn之上构建的,它专注于特征工程、模型选择和模型评估。

自动化程度:Auto-Keras提供了更高级的自动化特性,它可以自动化地进行模型的架构搜索和超参数调优。而Auto-sklearn提供了更为全面的自动化特性,包括特征预处理、模型的选择和优化等。

易用性:Auto-Keras的使用相对较复杂,需要对Keras和机器学习有深入的了解。而Auto-sklearn的使用相对简单,它提供了一个用户友好的界面。

性能:在某些情况下,Auto-Keras可能会提供更好的性能,因为它可以直接访问底层的机器学习算法和模型架构。而Auto-sklearn则需要将高级操作转换为底层的scikit-learn API调用,可能会有性能损失。

社区支持:Auto-Keras是由深度学习领域的研究者和工程师开发的,而Auto-sklearn是由Zuse Institute Berlin的研究者开发的,并且得到了scikit-learn社区的支持。

以下是使用Auto-sklearn进行自动机器学习的基本示例:

    import autosklearn.regression
    import numpy as np
     
    # 生成一些用于测试的数据
    X = np.random.rand(100, 50)
    y = np.random.rand(100)
     
    # 创建一个Auto-sklearn的regressor对象
    regressor = autosklearn.regression.AutoSklearnRegressor(
        time_left_for_this_task=120,
        per_run_time_limit=30,
    )
     
    # 使用训练数据进行训练
    regressor.fit(X, y)
     
    # 预测新的数据
    X_new = np.random.rand(10, 50)
    y_pred = regressor.predict(X_new)

以上代码创建了一个自动进行回归的Auto-sklearn对象,用于训练和预测。

Auto-Keras的使用可能会更复杂,因为它提供了更高级的API,例如:

    from keras import Sequential
    from keras.layers import Dense
    from autokeras import ImageClassifier
     
    # 创建一个Auto-Keras的image classifier对象
    clf = ImageClassifier(model=Sequential([
        Dense(64, activation='relu', input_shape=(28*28,)),
        Dense(10, activation='softmax')
    ]), max_trials=100)
     
    # 使用训练数据进行训练
    clf.fit(x_train, y_train, time_limit=12*60*60)
     
    # 预测新的数据
    y_pred = clf.predict(x_test)

在这个例子中,我们创建了一个用于图像分类的Auto-Keras对象,并用于训练和预测。

----以上内容由百度AI智能问答产生,仅供参考学习


 


http://www.kler.cn/a/321716.html

相关文章:

  • git使用及上线流程(仅为我工作中常用)
  • npm list -g --depth=0(用来列出全局安装的所有 npm 软件包而不显示它们的依赖项)
  • Pytorch如何将嵌套的dict类型数据加载到GPU
  • 数字孪生乡村:数字乡村智慧化营建思路
  • 路由器基本原理与配置
  • 使用python-Spark使用的场景案例具体代码分析
  • Ubuntu20.04.6 环境下docker设置proxy
  • SpringBoot-Starter2.7.3自动装配Redisson升级版本运行时的问题
  • 自动驾驶技术:人工智能驾驶的未来
  • tauri程序加载本地图片或者文件在前端页面展示
  • ModStartCMS v8.9.0 图片上传优化,富文本编辑器修复
  • Spring Boot 实战:使用观察者模式实现实时库存管理
  • localectl 命令:系统语言、键盘布局和区域设置
  • CORE 中间件、wwwroot
  • C++11中引入的thread
  • 正向科技|格雷母线定位系统的设备接线安装示范
  • 脚手架是什么?详细版+通俗易懂版!!!!!!
  • DNS与host文件
  • 职业技能大赛-自动化测试笔记(PageObject)分享-4
  • 如何将自定义支付网关与 WooCommerce Checkout 区块集成
  • HarmonyOS---权限和http/Axios网络请求
  • 处理 VA02修改行项目计划行(SCHEDULE LINES )报错:不可能确定一个消耗帐户
  • count(1)、count(*) 与 count(列名) 的区别
  • zabbix“专家坐诊”第257期问答
  • 19、网络安全合规复盘
  • C++ | Leetcode C++题解之第440题字典序的第K小数字