当前位置: 首页 > article >正文

面试经典150题 堆

215.数组中的第K个最大元素

建堆算法实现-CSDN博客

215. 数组中的第K个最大元素

中等

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

提示:

  • 1 <= k <= nums.length <= 105
  • -104 <= nums[i] <= 104

进行建堆操作,每次将堆中的第一个元素(最大元素)执行删除操作,删除K次后,最近一次删除掉的元素即为数组中的第K个最大元素 

class Solution {
    // 找到数组中第 k 大的元素
    public int findKthLargest(int[] nums, int k) {
        // 构建初始堆
        heapify(nums, nums.length);
        int size = nums.length;
        // 进行 k 次操作,每次将堆顶元素与末尾元素交换,并调整堆
        for (int i = 0; i < k; i++) {
            // 交换堆顶元素和当前末尾元素
            swap(nums, 0, size - 1);
            // 调整堆,排除已确定的末尾元素
            down(nums, 0, --size);
        }
        // 返回堆顶元素,即第 k 大的元素
        return nums[size];
    }

    // 构建初始堆的方法
    private static void heapify(int[] nums, int size) {
        // 从最后一个非叶子节点开始,逐步调整堆
        for (int i = size / 2 - 1; i >= 0; i--) {
            down(nums, i, size);
        }
    }

    // 堆的下潜操作
    private static void down(int[] array, int parent, int size) {
        while (true) {
            int max = parent;
            int left = parent * 2 + 1;
            int right = left + 1;
            // 如果左子节点存在且大于当前最大元素,更新最大元素索引
            if (left < size && array[left] > array[max]) {
                max = left;
            }
            // 如果右子节点存在且大于当前最大元素,更新最大元素索引
            if (right < size && array[right] > array[max]) {
                max = right;
            }
            // 如果最大元素就是当前父节点,说明堆调整完成,退出循环
            if (max == parent) {
                break;
            }
            // 交换最大元素和父节点
            swap(array, max, parent);
            // 更新父节点索引,继续调整
            parent = max;
        }
    }

    // 交换数组中两个元素的方法
    private static void swap(int[] a, int i, int j) {
        int temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }
}

502.IPO

502. IPO

困难

假设 力扣(LeetCode)即将开始 IPO 。为了以更高的价格将股票卖给风险投资公司,力扣 希望在 IPO 之前开展一些项目以增加其资本。 由于资源有限,它只能在 IPO 之前完成最多 k 个不同的项目。帮助 力扣 设计完成最多 k 个不同项目后得到最大总资本的方式。

给你 n 个项目。对于每个项目 i ,它都有一个纯利润 profits[i] ,和启动该项目需要的最小资本 capital[i] 。

最初,你的资本为 w 。当你完成一个项目时,你将获得纯利润,且利润将被添加到你的总资本中。

总而言之,从给定项目中选择 最多 k 个不同项目的列表,以 最大化最终资本 ,并输出最终可获得的最多资本。

答案保证在 32 位有符号整数范围内。

示例 1:

输入:k = 2, w = 0, profits = [1,2,3], capital = [0,1,1]
输出:4
解释:
由于你的初始资本为 0,你仅可以从 0 号项目开始。
在完成后,你将获得 1 的利润,你的总资本将变为 1。
此时你可以选择开始 1 号或 2 号项目。
由于你最多可以选择两个项目,所以你需要完成 2 号项目以获得最大的资本。
因此,输出最后最大化的资本,为 0 + 1 + 3 = 4。

示例 2:

输入:k = 3, w = 0, profits = [1,2,3], capital = [0,1,2]
输出:6

提示:

  • 1 <= k <= 105
  • 0 <= w <= 109
  • n == profits.length
  • n == capital.length
  • 1 <= n <= 105
  • 0 <= profits[i] <= 104
  • 0 <= capital[i] <= 109

理解题意:我们有一个现有的资本,一个所需资本和利润对应的投资元素,我们要进行投资资本就必须大于所需资本,要求K次投资能获得的最大资本。

贪心思想:在所有能投资的项目中,我们投资利润最大的那个。

思路:将资本和利润一一对应后,按照所需资本进行排序。

逐个遍历,将所有能投资的项目放入大根堆中,通过大根堆的性质选出利润最大的那一个进行投资,赚取利润后,再将我们目前能新投资的项目(我们赚取了利润,资本变多了)放入大根堆中,重复这个过程,直到投资的k次机会用完或者没有能投资的项目 

class Solution {
    // 找到最大化资本的方法
    public int findMaximizedCapital(int k, int w, int[] profits, int[] capital) {
        // 创建一个二维数组,用于存储资本和利润信息
        int total[][] = new int[profits.length][2];
        for (int i = 0; i < profits.length; i++) {
            // 将资本存入二维数组的第一列
            total[i][0] = capital[i];
            // 将利润存入二维数组的第二列
            total[i][1] = profits[i];
        }
        // 按照资本从小到大对二维数组进行排序
        Arrays.sort(total, (a, b) -> a[0] - b[0]);
        // 创建一个大顶堆优先队列,用于存储可选择的最大利润项目
        PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> y - x);
        int cur = 0;
        for (int i = 0; i < k; i++) {
            // 当还有未处理的项目且当前项目的资本小于等于当前资本 w 时
            while (cur < profits.length && total[cur][0] <= w) {
                // 将当前项目的利润加入优先队列
                pq.add(total[cur][1]);
                cur++;
            }
            // 如果优先队列不为空
            if (!pq.isEmpty()) {
                // 取出最大利润项目并增加当前资本 w
                w += pq.poll();
            } else {
                // 如果优先队列为空,无法进行操作,退出循环
                break;
            }
        }
        // 返回最终的资本 w
        return w;
    }
}

373.查找和最小的K对数字 

373. 查找和最小的 K 对数字

中等

给定两个以 非递减顺序排列 的整数数组 nums1 和 nums2 , 以及一个整数 k 

定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2 

请找到和最小的 k 个数对 (u1,v1) (u2,v2)  ...  (uk,vk) 。

示例 1:

输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
输出: [1,2],[1,4],[1,6]
解释: 返回序列中的前 3 对数:
     [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

示例 2:

输入: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
输出: [1,1],[1,1]
解释: 返回序列中的前 2 对数:
     [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

提示:

  • 1 <= nums1.length, nums2.length <= 105
  • -109 <= nums1[i], nums2[i] <= 109
  • nums1 和 nums2 均为 升序排列
  • 1 <= k <= 104
  • k <= nums1.length * nums2.length

首先我们明确,最小的数字对一定是nums1[0] + nums2[0],比他们稍大的可能是nums1[0 + 1] + nums2[0]或者nums1[0] + nums2[0 + 1],这种情况对每一个找到的数字对都适用。

我们优先将nums1[0] + nums2[0]加入小顶堆中,采取循环的方式,每次找到一个最小数字对,就加入所有可能的下一个最小数字对,注意当我们找到的不是第一个最小数字对时(nums1[0] + nums2[0]),堆中所有的元素和新加入的数字对都有可能是下一个最小数字对。

注意这里有一个特殊情况,看例子2,我们所找到的数字对,元素可能是相同的,但是索引不能是相同的,而我们在加入数字对的过程中,可能加入索引相同的数字对,造成重复的情况,所以我们要使用hash进行去重,如果找到的数字对的索引我们已经使用过了,我们就不能把他们对应的元素加入结果数组中,去重后k++,因为我们没有找到一个新的最小数字对。

class Solution {
    public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
        // 创建一个优先队列,用于存储二元组,按照两数之和的大小进行排序
        PriorityQueue<int[]> pq = new PriorityQueue<>(k, (o1, o2) -> {
            return nums1[o1[0]] + nums2[o1[1]] - nums1[o2[0]] - nums2[o2[1]];
        });
        // 用于存储最终结果的列表
        List<List<Integer>> result = new ArrayList<>();
        int length1 = nums1.length;
        int length2 = nums2.length;
        // 如果任一数组为空,直接返回空结果列表
        if (length1 == 0 || length2 == 0) {
            return result;
        }
        // 将第一个二元组(0,0)加入优先队列
        pq.offer(new int[]{0, 0});
        // 创建一个哈希表,用于存储已经处理过的二元组列表
        HashMap<List<Integer>, Integer> map = new HashMap<>();
        // 循环直到 k 次或者优先队列为空
        while (k-- > 0 &&!pq.isEmpty()) {
            // 取出优先队列中的二元组
            int[] temp = pq.poll();
            // 创建一个临时列表,存储当前二元组的索引
            List<Integer> mapList = new ArrayList<>();
            mapList.add(temp[0]);
            mapList.add(temp[1]);
            // 如果该二元组已经处理过,增加 k 的值,继续下一次循环
            if (map.containsKey(mapList)) {
                k++;
                continue;
            }
            // 将当前二元组列表加入哈希表
            map.put(mapList, 0);
            // 创建一个列表,存储当前二元组对应的两个数
            List<Integer> list = new ArrayList<>();
            list.add(nums1[temp[0]]);
            list.add(nums2[temp[1]]);
            // 将当前二元组对应的两个数的列表加入结果列表
            result.add(list);
            // 如果第一个数组还有下一个元素,将下一个二元组加入优先队列
            if (temp[0] + 1 < length1) {
                pq.offer(new int[]{temp[0] + 1, temp[1]});
            }
            // 如果第二个数组还有下一个元素,将下一个二元组加入优先队列
            if (temp[1] + 1 < length2) {
                pq.offer(new int[]{temp[0], temp[1] + 1});
            }
        }
        // 返回最终结果列表
        return result;
    }
}


http://www.kler.cn/a/321866.html

相关文章:

  • Linux 下 mysql 9.1 安装设置初始密码 【附脚本】
  • 使用 unicorn 和 capstone 库来模拟 ARM Thumb 指令的执行(一)
  • 随时随地编码:香橙派Zero3上安装Code Server远程开发指南
  • 【MySQL】约束
  • DOM 规范 — MutationObserver 接口
  • Lucene 和 Elasticsearch 中更好的二进制量化 (BBQ)
  • chatGPT问答知识合集【五】
  • 宠物鱼油补充剂行业调研:未来几年年复合增长率CAGR为7.8%
  • python之装饰器、迭代器、生成器
  • 国产游戏出海火热另一面:AI和API快速成长引发网络安全挑战
  • 机器人顶刊IEEE T-RO发布无人机动态环境高效表征成果:基于粒子的动态环境连续占有地图
  • OpenHarmony(鸿蒙南向)——平台驱动指南【MIPI CSI】
  • django使用笔记6--docker部署
  • 【Python语言初识(五)】
  • 【计算机网络】传输层协议TCP
  • python功能测试
  • 跟随Facebook的足迹:社交媒体背后的探索之旅
  • vue打包exe之electron-quick-start的npm install 报错
  • 丢失照片/消息/文件,当发现没有备份 Android 手机数据时急救方法
  • Java面试篇基础部分-Semaphore及其用法详解
  • 数据结构-线性表的单链式存储结构图解及C语言实现
  • 都说网络安全缺口那么大,但为何招聘数量却不多?总算明白了!
  • Linux系统部署Mysql8.x修改密码并且设置远程连接
  • UniApp基于xe-upload实现文件上传组件
  • electron的常用弹窗简单案例
  • 15年408-数据结构