当前位置: 首页 > article >正文

Transformers 引擎,vLLM 引擎,Llama.cpp 引擎,SGLang 引擎,MLX 引擎

1. Transformers 引擎

  • 开发者:Hugging Face
  • 主要功能:Transformers 库提供了对多种预训练语言模型的支持,包括 BERT、GPT、T5 等。用户可以轻松加载模型进行微调或推理。
  • 特性
    • 多任务支持:支持文本生成、文本分类、问答、翻译等多种自然语言处理任务。
    • 简单易用:API 设计友好,用户可以用几行代码完成模型的加载、推理和训练。
    • 社区支持:拥有丰富的文档和活跃的社区,提供大量的示例和教程。

2. vLLM 引擎

  • 目标:高效推理大型语言模型。
  • 特性
    • 混合精度支持:使用混合精度技术减少内存占用,提升计算速度。
    • 张量并行:通过张量并行方法来优化模型的运行,使其能在多 GPU 环境中高效运作。
    • 灵活性:适用于多种语言模型,可以与现有的 Transformers 库兼容使用。

3. Llama.cpp 引擎

  • 背景:Llama.cpp 是 LLaMA 模型的 C++ 实现,目标是提供高效的推理能力。
  • 特性
    • 高性能:通过优化算法和内存管理,提供更快的推理速度。
    • 本地部署:适合需要在本地机器上快速执行模型推理的场景。
    • 轻量级:相比其他实现,代码更加简洁,降低了系统资源的需求。

4. SGLang 引擎

  • 目标:提供一个图形化编程环境,以简化机器学习模型的构建。
  • 特性
    • 图形化界面:允许用户通过拖拽组件来构建程序,适合不熟悉代码的用户。
    • 模块化设计:支持将复杂任务拆分成可重复使用的模块,增强代码的可维护性。
    • 教育用途:非常适合教育领域,帮助学生理解编程和机器学习的基本概念。

5. MLX 引擎

  • 目标:为机器学习提供扩展性和灵活性。
  • 特性
    • 多模型支持:支持多种类型的机器学习模型(如深度学习、决策树等)。
    • 高效训练:通过优化算法提升训练速度,适合实时和大规模数据处理。
    • 集成工具:提供一系列工具,方便开发者进行数据处理、模型评估和结果可视化。

http://www.kler.cn/a/323161.html

相关文章:

  • 手机ip地址异常怎么解决
  • CSP-X2024山东小学组T2:消灭怪兽
  • R语言贝叶斯分析:INLA 、MCMC混合模型、生存分析肿瘤临床试验、间歇泉喷发时间数据应用|附数据代码...
  • 新手小白学习docker第八弹------实现MySQL主从复制搭建
  • 使用python-Spark使用的场景案例具体代码分析
  • 云原生周刊:Istio 1.24.0 正式发布
  • 每日OJ_牛客_OR59字符串中找出连续最长的数字串_双指针_C++_Java
  • 新茶饮卷出海,本土化成胜败关键
  • 牛肉高脂猫粮,福派斯猫粮新选择?乳鸽猫粮
  • zookeeper 服务搭建(单机)
  • 远程访问软路由
  • [半导体检测-8]:KLA Surfscan 系统设备组成
  • 深度学习----------------------语言模型
  • yolov10安装体验
  • ICM20948 DMP代码详解(48)
  • C# 字符串(String)的应用说明一
  • 机器学习入门
  • 单通道串口服务器
  • 【华为HCIP实战课程一】OSPF相关基础介绍及基础配置,网络工程师必修
  • 华为认证HCIA篇--网络通信基础
  • 3.5k star 一款开源简单好用的前端TAG标签组建库
  • 2024年最新C# ASP.NET+Vue斯诺克球馆购票系统,快速部署,抢占市场先机,优化球馆服务
  • vue-baidu-map的基本使用
  • SSM框架VUE电影售票管理系统开发mysql数据库redis设计java编程计算机网页源码maven项目
  • 2024/9/28 英语每日一段
  • git基础 -- 在 Git 中查找文件