当前位置: 首页 > article >正文

【机器学习】——支持向量机

文章目录

  • 支持向量机(Support Vector Machine, SVM)概述
  • SVM 的工作原理
  • 线性不可分数据:软间隔与核技巧
  • SVM 的数学形式
  • SVM 的优势
  • SVM 的缺点
  • SVM 的应用

支持向量机(Support Vector Machine, SVM)概述

支持向量机(SVM)是一种用于分类和回归分析的监督学习算法,尤其在分类问题上表现出色。SVM的核心思想是通过在特征空间中寻找一个最佳超平面,将不同类别的样本点尽可能地分开。这个超平面与训练数据点的距离最大化,从而使得分类器对未知数据具有良好的泛化能力。

SVM 的工作原理

1.线性可分数据:对于线性可分的数据,SVM通过寻找一个超平面将数据分为两类。假设有两类数据点(+1类和-1类),SVM的目标是找到一个能够最大化两个类别之间间隔的超平面。
**超平面:**在二维空间中,超平面就是一条直线;在三维空间中,它是一个平面;在更高维的空间中,它是一个超平面。数学上,超平面可以表示为
𝑤^𝑇*𝑥+𝑏=0其中 w 是法向量,定义了超平面的方向,b 是偏置,决定超平面与原点的距离。
**间隔(Margin):**超平面与数据点之间的最小距离称为间隔。SVM的目标是找到使这个间隔最大化的超平面。数据点距离超平面越远,分类结果越可靠。

2.支持向量:那些位于边界上的数据点称为支持向量。支持向量是定义超平面的关键数据点,因为它们决定了最优超平面的具体位置。移除其他数据点不会影响分类结果。

3.优化问题:SVM的核心是一个凸优化问题,其目标是最大化分类间隔。这个问题可以表示为一个约束优化问题:在这里插入图片描述

约束条件是:在这里插入图片描述
其中,𝑥𝑖是输入样本,𝑦𝑖 是类别标签(+1或-1),w 是权重向量,b 是偏置。

线性不可分数据:软间隔与核技巧

现实数据往往是线性不可分的,因此我们需要对SVM进行扩展。

1.软间隔(Soft Margin):当数据不可完全线性分离时,SVM引入松弛变量
𝜉𝑖 ,允许部分数据点出现在错误的边界一侧。这样,优化问题变为在最大化间隔的同时,允许一定的分类错误。目标函数更新为:
在这里插入图片描述
其中,𝐶 是一个超参数,控制分类错误和间隔大小之间的权衡。

核技巧(Kernel Trick):当数据在低维空间不可分时,可以通过核技巧将数据映射到高维空间,从而使其线性可分。SVM不需要显式地计算映射后的数据点坐标,而是通过核函数在低维空间中进行高维空间的运算。常见的核函数包括:

线性核:适用于线性可分的数据。
多项式核:处理多项式关系的数据。
高斯核(RBF核):适用于数据分布较复杂的情况。其形式为:
在这里插入图片描述
Sigmoid核:类似神经网络的激活函数,适合某些特定任务。

SVM 的数学形式

通过对偶问题的求解,SVM可以表达为拉格朗日乘子的形式。目标变成了求解下列拉格朗日函数:
在这里插入图片描述
其中,αi是拉格朗日乘子。优化后,最终分类器的决策函数可以表示为:
在这里插入图片描述
通过核函数 𝐾(𝑥𝑖,𝑥)SVM能够高效处理高维特征空间的计算。

SVM 的优势

强大的泛化能力:SVM通过最大化分类间隔,能有效提升对未知数据的预测准确性。
适应高维数据:SVM能够处理高维特征空间的数据,且在特征数远大于样本数时仍然有效。
使用核技巧:通过核函数,SVM可以处理非线性问题,而无需显式进行高维映射

SVM 的缺点

计算复杂度高:SVM的计算成本较高,尤其在样本数量很大时(因为其复杂度与样本数量呈平方关系)。
超参数调优困难:SVM的性能高度依赖于超参数(如核函数类型、𝐶 参数和 𝛾 参数等)的选择,通常需要交叉验证来确定最佳参数。
不适合大型数据集:在大规模数据集上,SVM的计算效率不如其他算法(如随机森林、神经网络等)。

SVM 的应用

SVM广泛应用于以下领域:

文本分类:如垃圾邮件检测、情感分析等。
图像识别:如人脸识别、手写数字识别等。
基因数据分类:用于生物信息学中的基因数据分析。
时间序列预测:尽管SVM本质上是一种分类算法,但在特定情况下也可用于回归任务。
总结
支持向量机是一种功能强大且理论坚实的分类算法,尤其在处理高维数据和小样本数据上有着显著的优势。SVM通过核函数扩展,能够处理复杂的非线性分类问题。虽然在处理大型数据集时效率较低,但通过合适的参数调整和核函数选择,SVM在许多应用场景中表现出色。


http://www.kler.cn/news/323722.html

相关文章:

  • uni-app 封装websocket 心跳检测,开箱即用
  • SCAU学习笔记 - 面向对象程序设计课后习题
  • GAMES101(20节,动画和仿真)
  • 如何提升JavaScript安全性,保护应用程序免受威胁
  • Ubuntu 离线安装 docker
  • 深度对比:etcd、Consul、Zookeeper 和 Nacos 作为注册中心和配置中心的优势与劣势
  • 前端请求音频返回pcm流进行播放
  • 大数据毕业设计选题推荐-豆瓣电子图书推荐系统-数据分析-Hive-Hadoop-Spark
  • 【Anti-UAV410】论文阅读
  • Miniforge详细安装教程(macOs和Windows)
  • 尚品汇-自动化部署-Jenkins的安装与环境配置(五十六)
  • SpringBoot gateway如何支持跨域?
  • Spring的IOC和DI入门案例分析和实现
  • AWS注册时常见错误处理
  • RabbitMQ——消息的可靠性处理
  • Docker-Compose:简化Docker容器编排的利器
  • [vulnhub] Prime 1
  • 从哪里下载高清解压视频素材?推荐五个优质素材资源网站
  • RtspServer:轻量级RTSP服务器和推流器
  • 使用 PowerShell 命令更改 RDP 远程桌面端口(无需修改防火墙设置)
  • 以太网交换安全:端口隔离
  • 【C语言】sigemptyset、sigaddset、pthread_sigmask
  • 人工智能在医疗健康领域的应用
  • 【AI】深度学习的数学--核心公式
  • 使用世界领先的 Qwen2.5-Math 开源模型当 AI 数学老师,让奥数解题辅导不在鸡飞狗跳(文末有福利)
  • Three.js后期处理与着色器
  • 有问题未解决(9.28)
  • Git的安装 + 基本操作
  • ubuntu中库文件安装的位置以及头文件的位置
  • 123法则与2B法则