当前位置: 首页 > article >正文

单位向量的定义和举例说明

单位向量是指长度为 1 的向量。在数学中,单位向量通常用于表示方向,因为它只有方向信息,而没有大小信息。

单位向量的定义:

一个向量 v \mathbf{v} v 被称为单位向量,如果它的**模(长度)**等于 1,即:
∥ v ∥ = 1 \|\mathbf{v}\| = 1 v=1

其中 ∥ v ∥ \|\mathbf{v}\| v 表示向量的欧几里得长度,定义为:
∥ v ∥ = v 1 2 + v 2 2 + ⋯ + v n 2 \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2} v=v12+v22++vn2

对于一个向量 v \mathbf{v} v 来说,如果它不是单位向量,则可以通过将它除以它的模来将其标准化为单位向量:
v ^ = v ∥ v ∥ \hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|} v^=vv

其中, v ^ \hat{\mathbf{v}} v^ 是向量 v \mathbf{v} v 的单位向量。

举例说明:

1. 二维空间的单位向量:

在二维空间(平面)中,一个常见的单位向量是:
v = [ 1 0 ] \mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} v=[10]

  • 这个向量在 x x x 轴上,并且它的长度为 1:
    ∥ v ∥ = 1 2 + 0 2 = 1 \|\mathbf{v}\| = \sqrt{1^2 + 0^2} = 1 v=12+02 =1

另一个二维单位向量例子:
v = [ 1 2 1 2 ] \mathbf{v} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} v=[2 12 1]

  • 这个向量与 x x x 轴正方向形成 45 度角,它的长度为:
    ∥ v ∥ = ( 1 2 ) 2 + ( 1 2 ) 2 = 1 2 + 1 2 = 1 = 1 \|\mathbf{v}\| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} = 1 v=(2 1)2+(2 1)2 =21+21 =1 =1
2. 三维空间的单位向量:

在三维空间中,一个常见的单位向量是:
v = [ 0 0 1 ] \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} v= 001

  • 这个向量在 z z z 轴方向,并且它的长度为 1:
    ∥ v ∥ = 0 2 + 0 2 + 1 2 = 1 \|\mathbf{v}\| = \sqrt{0^2 + 0^2 + 1^2} = 1 v=02+02+12 =1

另一个三维单位向量例子:
v = [ 1 2 1 2 2 2 ] \mathbf{v} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} v= 212122

这个向量的长度为:
∥ v ∥ = ( 1 2 ) 2 + ( 1 2 ) 2 + ( 2 2 ) 2 = 1 4 + 1 4 + 2 4 = 1 = 1 \|\mathbf{v}\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{2}{4}} = \sqrt{1} = 1 v=(21)2+(21)2+(22 )2 =41+41+42 =1 =1

3. 任意向量标准化为单位向量:

假设有一个二维向量:
v = [ 3 4 ] \mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} v=[34]

这个向量的长度为:
∥ v ∥ = 3 2 + 4 2 = 9 + 16 = 25 = 5 \|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 v=32+42 =9+16 =25 =5

我们可以将它标准化为单位向量 v ^ \hat{\mathbf{v}} v^
v ^ = 1 5 [ 3 4 ] = [ 3 5 4 5 ] \hat{\mathbf{v}} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix} v^=51[34]=[5354]

验证其长度:
∥ v ^ ∥ = ( 3 5 ) 2 + ( 4 5 ) 2 = 9 25 + 16 25 = 25 25 = 1 \|\hat{\mathbf{v}}\| = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \sqrt{\frac{9}{25} + \frac{16}{25}} = \sqrt{\frac{25}{25}} = 1 v^=(53)2+(54)2 =259+2516 =2525 =1

所以,单位向量 v ^ = [ 3 5 4 5 ] \hat{\mathbf{v}} = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix} v^=[5354] 确实是长度为 1 的向量。

总结:

  • 单位向量是长度为 1 的向量,通常用于表示方向。
  • 任何非零向量都可以通过将其除以自身的长度来标准化为单位向量。
  • 在几何和物理学中,单位向量常用于表示物体的方向,而忽略其大小。

http://www.kler.cn/a/324559.html

相关文章:

  • hive表名重命名、rename重命名
  • 【项目开发】Web App vs Native App,开发者作何选择?
  • ubuntu 22.04 shell
  • [JAVA]有关MyBatis环境配置介绍
  • Tiktok对接和内容发布申请流程
  • 利用python 检测当前目录下的所有PDF 并转化为png 格式
  • 一键自动化博客发布工具
  • 大厂AI必备数据结构与算法——leetcode链表习题(四)详细文档
  • Hive数仓操作(一)
  • 如何优化JVM性能:调优参数技巧
  • 探索光耦:光耦在电脑电源中的应用及其重要性
  • 大数据Hive组件安装
  • 快速上手Cron表达式
  • Github 2024-09-29 php开源项目日报 Top10
  • Redis Pipeline 使用指南:从基础到进阶
  • C语言扫盲
  • 《Linux运维总结:使用 MongoDB工具备份和恢复mongodb 7.0.14分片集群(方案一)》
  • elementUi / elementPlus自定义上传方法 Upload自定义文件上传
  • Hive命令及属性配置
  • 我设置了路由器自动切换ip,这会让我的账号登录地址经常改变吗
  • 初识C#(二)- 流程控制
  • Apache APISIX学习(2):安装Grafana、prometheus
  • LeeCode打卡第三十一天
  • 基于springboot+vue学生宿舍管理系统设计与实现
  • 【Verilog学习日常】—牛客网刷题—Verilog企业真题—VL68
  • [240929] 12 款最佳免费开源隐写工具 | Llama 3.2: 开源、可定制模型,革新边缘人工智能和视觉体验