当前位置: 首页 > article >正文

【LeetCode每日一题】——95.不同的二叉搜索树 II

文章目录

  • 一【题目类别】
  • 二【题目难度】
  • 三【题目编号】
  • 四【题目描述】
  • 五【题目示例】
  • 六【题目提示】
  • 七【解题思路】
  • 八【时间频度】
  • 九【代码实现】
  • 十【提交结果】

一【题目类别】

  • 回溯

二【题目难度】

  • 中等

三【题目编号】

  • 95.不同的二叉搜索树 II

四【题目描述】

  • 给你一个整数 n ,请你生成并返回所有由 n 个节点组成且节点值从 1n 互不相同的不同 二叉搜索树 。可以按 任意顺序 返回答案。

五【题目示例】

  • 示例 1
    在这里插入图片描述

    • 输入:n = 3
    • 输出:[[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]
  • 示例 2

    • 输入:n = 1
    • 输出:[[1]]

六【题目提示】

  • 1 <= n <= 8

七【解题思路】

  • 注意题目描述,给定有序序列,生成不同的二叉搜索树,所以基本思想就是选择有序序列中的每一个值作为根节点构建二叉搜索树(因为序列有序),所以自然想到使用回溯算法来完成本题
  • 所以我们只需要给定范围,在此范围内,选择每一个节点都作为一次二叉搜索树的根节点
  • 然后分别向左右序列递归,构成最小的二叉搜索树,然后返回拼接即可得到最终符合要求的二叉搜索树
  • 最后返回结果即可
  • 具体细节可以参考下面的代码

八【时间频度】

  • 时间复杂度: O ( 4 n n 1 2 ) O(\frac{4^n}{n^{\frac{1}{2}}}) O(n214n) n n n为传入的参数值
  • 空间复杂度: O ( 4 n n 1 2 ) O(\frac{4^n}{n^{\frac{1}{2}}}) O(n214n) n n n为传入的参数值

九【代码实现】

  1. Java语言版
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */

class Solution {
    public List<TreeNode> generateTrees(int n) {
        // 返回结果
        if (n == 0) {
            return new ArrayList<>();
        }
        return dfs(1, n);
    }

    // 使用回溯计算所有可能的二叉搜索树
    private List<TreeNode> dfs(int start, int end) {
        // 保存计算结果
        List<TreeNode> res = new ArrayList<>();
        // 此时已经不能构成一个节点了,直接返回空
        if (start > end) {
            res.add(null);
            return res;
        }
        // 枚举所有根节点
        for (int i = start; i <= end; i++) {
            // 获得所有左子树集合
            List<TreeNode> leftTree = dfs(start, i - 1);
            // 获得所有右子树集合
            List<TreeNode> rightTree = dfs(i + 1, end);
            // 分别从左右子树集合中选出一棵子树,并将其拼接到根节点上
            for (TreeNode leftNode : leftTree) {
                for (TreeNode rightNode : rightTree) {
                    TreeNode root = new TreeNode(i);
                    root.left = leftNode;
                    root.right = rightNode;
                    res.add(root);
                }
            }
        }
        // 返回计算结果
        return res;
    }
}
  1. Python语言版
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right

class Solution:
    def generateTrees(self, n: int) -> List[Optional[TreeNode]]:
        
        # 使用回溯计算所有可能的二叉搜索树
        def dfs(start, end):

            # 此时已经不能构成一个节点了,直接返回空
            if start > end:
                return [None]

            # 保存计算结果
            res = []

            # 枚举所有根节点
            for i in range(start, end + 1):

                # 获得所有左子树集合
                leftTree = dfs(start, i - 1)

                # 获得所有右子树集合
                rightTree = dfs(i + 1, end)

                # 分别从左右子树集合中选出一棵子树,并将其拼接到根节点上
                for leftNode in leftTree:
                    for rightNode in rightTree:
                        root = TreeNode(i)
                        root.left = leftNode
                        root.right = rightNode
                        res.append(root)
            
            # 返回计算结果
            return res

        # 返回结果
        return dfs(1, n) if n else []
  1. C++语言版
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */

class Solution {
public:
    vector<TreeNode*> generateTrees(int n) {
        // 返回结果
        if (n == 0) {
            return {};
        }
        return dfs(1, n);
    }

    // 使用回溯计算所有可能的二叉搜索树
    vector<TreeNode*> dfs(int start, int end) {
        // 保存计算结果
        vector<TreeNode*> res;
        // 此时已经不能构成一个节点了,直接返回空
        if (start > end) {
            res.push_back(NULL);
            return res;
        }
        // 枚举所有根节点
        for (int i = start; i <= end; i++) {
            // 获得所有左子树集合
            vector<TreeNode*> leftTrees = dfs(start, i - 1);
            // 获得所有右子树集合
            vector<TreeNode*> rightTrees = dfs(i + 1, end);
            // 分别从左右子树集合中选出一棵子树,并将其拼接到根节点上
            for (auto leftNode : leftTrees) {
                for (auto rightNode : rightTrees) {
                    TreeNode* root = new TreeNode(i);
                    root->left = leftNode;
                    root->right = rightNode;
                    res.push_back(root);
                }
            }
        }
        // 返回计算结果
        return res;
    }
};

十【提交结果】

  1. Java语言版
    在这里插入图片描述

  2. Python语言版
    在这里插入图片描述

  3. C++语言版
    在这里插入图片描述


http://www.kler.cn/a/326466.html

相关文章:

  • 计算机网络例题
  • 【可实战】Bug的判定标准、分类、优先级、定位方法、提交Bug(包含常见面试题)
  • 68.基于SpringBoot + Vue实现的前后端分离-心灵治愈交流平台系统(项目 + 论文PPT)
  • 加速科技荣获“浙江省企业研究院”认定
  • Django学习笔记之数据库(一)
  • 【机器学习:八、逻辑回归】
  • python流程控制语句
  • Python编码系列—Python观察者模式:实现事件驱动架构的利器
  • 力扣 中等 275.H指数
  • 凌晨1点开播!Meta Connect 2024开发者大会,聚焦Llama新场景和AR眼镜
  • javacv FFmpegFrameGrabber 阻塞重连解决方法汇总
  • 【深度学习基础模型】Hopfield 网络 (HN) 详细理解并附实现代码。
  • 【RabbitMQ】RabbitMq消息丢失、重复消费以及消费顺序性的解决方案
  • C#知识|设计模式的分类及认识
  • 从0学习React(1)
  • Goweb---Gorm操作数据库(三) 更新
  • 数学建模研赛总结
  • 【动态规划-分组背包】力扣1155. 掷骰子等于目标和的方法数
  • 并发编程三大特性(原子性、可见性、有序性)
  • 每日一题:⻓度最⼩的⼦数组
  • 计算机毕业设计 Java教务管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
  • python魔法(python高级magic方法进阶)
  • 【北京迅为】《STM32MP157开发板嵌入式开发指南》- 第十五章 Linux 文件系统概念
  • 基于大数据的二手电子产品需求分析及可视化系统
  • open-resty 服务安装kafka插件
  • 深入理解EVM(以太坊虚拟机)及其工作原理,因为这将直接影响智能合约的开发。