当前位置: 首页 > article >正文

学习VTK的目的和方法

1 VTK(Visualization Toolkit)是一个开源的跨平台软件系统,用于三维计算机图形学、图像处理和可视化。学习VTK的主要目的有:

  • 3D可视化: VTK提供了丰富的工具和算法,可以用来可视化各种科学数据,包括医学图像、有限元分析结果、流体模拟数据等。
  • 图像处理: VTK支持多种图像处理操作,如滤波、分割、配准等,可以对医学图像进行预处理和分析。
  • 科学计算可视化: VTK可以与其他科学计算软件(如MATLAB、Python)结合,实现科学计算结果的可视化。
  • 自定义可视化: VTK提供了灵活的接口,可以自定义各种可视化组件和交互方式,满足个性化的需求。

对于有科研需求的小伙伴,可以利用VTK将你的数据和实验结果进行可视化,对数据有一个感官的理解。比如下面的图像就是一个细胞分裂增殖的模拟图像,使用VTK对数据进行了可视化。

                                                          3图1 细胞克隆增殖的模拟

VTK就是一个工具,不用刻意的去学习它。假如你不做数据的显示,也不需要做3D模型的渲染,你就不用去学习它,因为学习任何事物都是需要学习成本的。

2 学习方法

学习VTK的方法有很多种,以下是一些建议:

  • 官方文档: VTK官方文档是学习VTK最权威的资料,提供了详细的类、函数和示例。
  • 教程和书籍: 网上有很多关于VTK的教程和书籍,可以帮助你快速入门。
  • 示例代码: VTK提供了大量的示例代码,可以帮助你理解各种概念和用法。
  • 社区: VTK有一个活跃的社区,你可以通过论坛、邮件列表等方式向其他用户提问和交流。
  • 实践: 最好的学习方式是实践。通过编写自己的代码,尝试实现各种功能,可以加深对VTK的理解。

3 一个比较有意思的例子

我们模拟一下太阳光线照射到地球上,然后有反射的情况,其实就是一个光线追踪算法。

                                                        图2 射线追踪算法

先看代码:

#include <iostream>
#include <vtkSmartPointer.h>
#include <vtkSphereSource.h>
#include <vtkActor.h>
#include <vtkConeSource.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkOBBTree.h>
#include <vtkMath.h>
#include <vtkTransform.h>
#include <vtkTransformFilter.h>
#include <vtkMatrix4x4.h>
#include <vtkPolyDataNormals.h>
#include <vtkPlaneSource.h>
#include <vtkPoints.h>
#include <vtkInteractorStyleTrackballCamera.h>
#include <vtkCamera.h>
#include <vtkLight.h>
#include <vtkJPEGReader.h>
#include <vtkTexture.h>
#include <vtkTextureMapToSphere.h>
#include <vtkCellCenters.h>
#include <vtkPolyDataNormals.h>
#include <vtkVertexGlyphFilter.h>
#include <vtkGlyph3D.h>
#include <vtkArrowSource.h>
#include <vtkCellData.h>
#include <vtkPointData.h>
#include <vtkIdList.h>
#include <vtkDoubleArray.h>
#include <vtkLineSource.h>

using namespace std;
vtkSmartPointer<vtkActor> point2Actor(vtkSmartPointer<vtkPoints> points){
    vtkNew<vtkPolyData> polyData;
    polyData->SetPoints(points);
    vtkNew<vtkVertexGlyphFilter> filter;
    filter->SetInputData(polyData);
    filter->Update();
    vtkNew<vtkPolyDataMapper> mapper;
    mapper->SetInputConnection(filter->GetOutputPort());
    vtkSmartPointer<vtkActor> actor=vtkSmartPointer<vtkActor>::New();
    actor->SetMapper(mapper);
    return actor;
}



int main()
{

    // Sun Options
    // Radius of the sun half-sphere
    double RadiusSun=10.0;
    // Distance of the sun's center from (0,0,0)
    double DistanceSun=50.0;
    // Phi & Theta Resolution of sun
    int ResolutionSun=10;

    // Earth Options
    // Radius of the earth sphere
    double RadiusEarth=150.0;
    // Phi & Theta Resolution of earth
    int ResolutionEarth=120;

    // Ray Options
    double RayCastLength=500.0;

    // Color Options
    double ColorSun[3]={1.0,1.0,0.0};
    double ColorSunEdge[3]={0.0,0.0,0.0};
    double ColorEarthEdge[3]={1.0,1.0,1.0};
    double ColorBackground[]={0.0,0.0,0.0};
    double ColorLight[]={1.0,1.0,0.0};
    double ColorSunPoints[]={1.0,1.0,0.0};
    double ColorSunGlyphs[]={1.0,1.0,0.0};
    double ColorRayHit[]={1.0,1.0,0.0};
    double ColorRayMiss[]={1.0,1.0,1.0};
    double OpacityRayMiss=0.5;
    double ColorEarthGlyphs[]={0.0,0.0,1.0};
    double ColorRayReflected[]={1.0,1.0,0.0};

    // Load a JPEG file with an 'earth' texture
    vtkNew<vtkJPEGReader> reader;
    reader->SetFileName("../data/R-C.jpeg");
    reader->Update();

    vtkNew<vtkSphereSource> sun;
    sun->SetCenter(0.0,DistanceSun,0.0);
    sun->SetRadius(RadiusSun);
    sun->SetThetaResolution(ResolutionSun);
    sun->SetPhiResolution(ResolutionSun);
    sun->SetStartTheta(180);  // create a half-sphere
    // Create mapper
    vtkNew<vtkPolyDataMapper> sunMapper;
    sunMapper->SetInputConnection(sun->GetOutputPort());
    // Create actor
    vtkNew<vtkActor> sunActor;
    sunActor->SetMapper(sunMapper);
    sunActor->GetProperty()->SetColor(ColorSun);
    sunActor->GetProperty()->EdgeVisibilityOn();  // show edges/wireframe
    sunActor->GetProperty()->SetEdgeColor(ColorSunEdge);

    // Create and configure the earth spere
    vtkNew<vtkSphereSource> earth;
    earth->SetCenter(0.0,-RadiusEarth,0.0);
    earth->SetThetaResolution(ResolutionEarth);
    earth->SetPhiResolution(ResolutionEarth);
    earth->SetRadius(RadiusEarth);

    // texture to earth
    vtkNew<vtkTexture> texture;
    texture->SetInputConnection(reader->GetOutputPort());
    texture->Update();

    vtkNew<vtkTextureMapToSphere> map_to_sphere;
    map_to_sphere->SetInputConnection(earth->GetOutputPort());
    map_to_sphere->PreventSeamOn();
    map_to_sphere->Update();


    vtkNew<vtkPolyDataMapper> earthMapper;
    earthMapper->SetInputConnection(map_to_sphere->GetOutputPort());
    vtkNew<vtkActor> earthActor;
    earthActor->SetMapper(earthMapper);
    earthActor->SetTexture(texture);
    earthActor->GetProperty()->EdgeVisibilityOn();
    earthActor->GetProperty()->SetEdgeColor(ColorEarthEdge);

    // Renderer to display
    vtkNew<vtkRenderer> ren;
    ren->AddActor(sunActor);
    ren->AddActor(earthActor);
    ren->SetBackground(ColorBackground);


    vtkNew<vtkCellCenters> cellCenterCalcSun;
    cellCenterCalcSun->SetInputConnection(sun->GetOutputPort());
    cellCenterCalcSun->Update();

    //cellCenterCalcSun->Print(cout);
    //cout<<cellCenterCalcSun->GetOutput()->GetNumberOfPoints()<<endl;
    vtkPoints* pointsInCellCenterCalcSun=cellCenterCalcSun->GetOutput()->GetPoints();
    /*
    for(vtkIdType i=0;i<pointsInCellCenterCalcSun->GetNumberOfPoints();++i){
        double point[3];
        pointsInCellCenterCalcSun->GetPoint(i,point);
        cout<<point[0]<<","<<point[1]<<","<<point[2]<<endl;
    }
    */
    for(vtkIdType i=0;i<cellCenterCalcSun->GetOutput()->GetNumberOfPoints();++i){
        /*
        cout<<cellCenterCalcSun->GetOutput()->GetPoint(i)[0]<<","
            <<cellCenterCalcSun->GetOutput()->GetPoint(i)[1]<<","
            <<cellCenterCalcSun->GetOutput()->GetPoint(i)[2]<<endl;
        */
        vtkNew<vtkPoints> points;
        points->InsertNextPoint(cellCenterCalcSun->GetOutput()->GetPoint(i)[0],
                                cellCenterCalcSun->GetOutput()->GetPoint(i)[1],
                                cellCenterCalcSun->GetOutput()->GetPoint(i)[2]);
        vtkSmartPointer<vtkActor> actor=point2Actor(points);
        actor->GetProperty()->SetColor(ColorSunPoints);
        actor->GetProperty()->SetPointSize(5);
        ren->AddActor(actor);
    }


    vtkNew<vtkPolyDataNormals> normalsCalcSun;
    normalsCalcSun->SetInputConnection(sun->GetOutputPort());
    // Disable normal calculation at cell vertices
    normalsCalcSun->ComputePointNormalsOff();
    // Enable normal calculation at cell centers
    normalsCalcSun->ComputeCellNormalsOn();
    // Disable splitting of sharp edges
    normalsCalcSun->SplittingOff();
    // Disable global flipping of normal orientation
    normalsCalcSun->FlipNormalsOff();
    // Enable automatic determination of correct normal orientation
    normalsCalcSun->AutoOrientNormalsOn();
    normalsCalcSun->Update();
    // Create a 'dummy' vtkCellCenters to force the glyphs to the cell-centers
    vtkNew<vtkCellCenters> dummy_cellCenterCalcSun;
    dummy_cellCenterCalcSun->VertexCellsOn();
    dummy_cellCenterCalcSun->SetInputConnection(normalsCalcSun->GetOutputPort());

    // Create a new 'default' arrow to use as a glyph
    vtkNew<vtkArrowSource> arrow;
    vtkNew<vtkGlyph3D> glyphSun;
    glyphSun->SetInputConnection(dummy_cellCenterCalcSun->GetOutputPort());
    glyphSun->SetSourceConnection(arrow->GetOutputPort());
    glyphSun->SetVectorModeToUseNormal();
    glyphSun->SetScaleFactor(5);
    vtkNew<vtkPolyDataMapper> glyphMapperSun;
    glyphMapperSun->SetInputConnection(glyphSun->GetOutputPort());
    vtkNew<vtkActor> glyphActorSun;
    glyphActorSun->SetMapper(glyphMapperSun);
    glyphActorSun->GetProperty()->SetColor(ColorSunGlyphs);
    ren->AddActor(glyphActorSun);

    // Prepare for ray-tracing
    vtkNew<vtkOBBTree> obbEarth;
    obbEarth->SetDataSet(earth->GetOutput());
    obbEarth->BuildLocator();
    double tol=1.e-8;
    obbEarth->SetTolerance(tol);

    vtkNew<vtkPolyDataNormals> normalsCalcEarth;
    normalsCalcEarth->SetInputConnection(earth->GetOutputPort());
    normalsCalcEarth->ComputePointNormalsOff();
    normalsCalcEarth->ComputeCellNormalsOn();
    normalsCalcEarth->SplittingOff();
    normalsCalcEarth->FlipNormalsOff();
    normalsCalcEarth->AutoOrientNormalsOn();
    normalsCalcEarth->Update();


    //cout<<"Prepare the ray using point and normal"<<endl;
    // Extract the normal-vector data at the sun's cells
    vtkDataArray* normalsSun=normalsCalcSun->GetOutput()->GetCellData()->GetNormals();
    // Extract the normal-vector data at the earth's cells
    vtkDataArray* normalsEarth=normalsCalcEarth->GetOutput()->GetCellData()->GetNormals();

    // Create a dummy 'vtkPoints' to act as a container for the point coordinates where intersections are found
    vtkNew<vtkPoints> intersectPoints;
    vtkNew<vtkIdList> intersectCells;
    // Create a dummy 'vtkList' to act as a container for the normal vectors where intersections are found.
    vtkNew<vtkDoubleArray> normalsVector;
    normalsVector->SetNumberOfComponents(3);
    // Create a dummy 'vtkPolyData' to store points and normals
    vtkNew<vtkPoints> dummy_points;
    vtkNew<vtkPolyData> dummy_polydata;
    for(vtkIdType i=0;i<pointsInCellCenterCalcSun->GetNumberOfPoints();++i){
        // Get the coordinates of sun's cell center
        double pointSun[3];
        cellCenterCalcSun->GetOutput()->GetPoint(i,pointSun);
        // Get normal vector at that cell
        double* normals=normalsSun->GetTuple(i);
        //cout<<normals[0]<<","<<normals[1]<<","<<normals[2]<<endl;
        // Calculate the 'target' of the ray based on 'RayCastLength'
        double pointEarth[3];
        pointEarth[0]=pointSun[0]+normals[0]*RayCastLength;
        pointEarth[1]=pointSun[1]+normals[1]*RayCastLength;
        pointEarth[2]=pointSun[2]+normals[2]*RayCastLength;

        int code=obbEarth->IntersectWithLine(pointSun,pointEarth,intersectPoints,intersectCells);
        if(code<0){
            continue;
        }
        double intersection[3];
        vtkIdType cellId;
        double normalIntersect[3];
        vtkNew<vtkLineSource> line;
        vtkNew<vtkLineSource> lineRay;
        for(int i=0;i<intersectPoints->GetNumberOfPoints();++i){
            if(i==1)
                continue;
            intersectPoints->GetPoint(i,intersection);
            //cout<<"Intersection "<<i<<" : "<<intersection[0]<<","<<intersection[1]<<","<<intersection[2]<<endl;
            //
            cellId=intersectCells->GetId(i);
            //cout<<"\tCellId "<<i<<" : "<<cellId<<endl;
            normalIntersect[0]=normalsEarth->GetTuple(cellId)[0];
            normalIntersect[1]=normalsEarth->GetTuple(cellId)[1];
            normalIntersect[2]=normalsEarth->GetTuple(cellId)[2];
            normalsVector->InsertNextTuple3(normalIntersect[0],normalIntersect[1],normalIntersect[2]);
            dummy_points->InsertNextPoint(intersection[0],intersection[1],intersection[2]);
            // line
            line->SetPoint1(pointSun);
            line->SetPoint2(intersection);

            // Calculate the incident ray vector
            double vecInc[3];
            vecInc[0]=intersection[0]-pointSun[0];
            vecInc[1]=intersection[1]-pointSun[1];
            vecInc[2]=intersection[2]-pointSun[2];
            // Calculate reflected ray vector
            double vecRef[3];
            double dot=vecInc[0]*normalIntersect[0]+vecInc[1]*normalIntersect[1]+vecInc[2]*normalIntersect[2];
            vecRef[0]=vecInc[0]-2.0*dot*normalIntersect[0];
            vecRef[1]=vecInc[1]-2.0*dot*normalIntersect[1];
            vecRef[2]=vecInc[2]-2.0*dot*normalIntersect[2];

            // Calculate the target of reflected ray
            double pointRayReflectedTarget[3];

            pointRayReflectedTarget[0]=intersection[0]+vecRef[0]*RayCastLength;
            pointRayReflectedTarget[1]=intersection[1]+vecRef[1]*RayCastLength;
            pointRayReflectedTarget[2]=intersection[2]+vecRef[2]*RayCastLength;
            lineRay->SetPoint1(intersection);
            lineRay->SetPoint2(pointRayReflectedTarget);
        }
        vtkNew<vtkPolyDataMapper> lineMapper;
        vtkNew<vtkPolyDataMapper> lineRayMapper;
        lineMapper->SetInputConnection(line->GetOutputPort());
        lineRayMapper->SetInputConnection(lineRay->GetOutputPort());
        vtkNew<vtkActor> lineActor;
        vtkNew<vtkActor> lineRayActor;
        lineActor->SetMapper(lineMapper);
        lineActor->GetProperty()->SetColor(ColorRayHit);
        lineRayActor->SetMapper(lineRayMapper);
        lineRayActor->GetProperty()->SetColor(ColorRayReflected);
        ren->AddActor(lineActor);
        ren->AddActor(lineRayActor);
    }
    dummy_polydata->SetPoints(dummy_points);
    dummy_polydata->GetPointData()->SetNormals(normalsVector);
    vtkNew<vtkGlyph3D> glyphEarth;
    glyphEarth->SetInputData(dummy_polydata);
    glyphEarth->SetSourceConnection(arrow->GetOutputPort());
    glyphEarth->SetVectorModeToUseNormal();
    glyphEarth->SetScaleFactor(5);

    vtkNew<vtkPolyDataMapper> glyphMapperEarth;
    glyphMapperEarth->SetInputConnection(glyphEarth->GetOutputPort());

    vtkNew<vtkActor> glyphActorEarth;
    glyphActorEarth->SetMapper(glyphMapperEarth);
    glyphActorEarth->GetProperty()->SetColor(ColorEarthGlyphs);
    ren->AddActor(glyphActorEarth);


    vtkNew<vtkCamera> camera;
    camera->SetPosition(RadiusEarth,DistanceSun,RadiusEarth);
    camera->SetFocalPoint(0.0,0.0,0.0);
    camera->SetViewAngle(30.0);
    ren->SetActiveCamera(camera);



    //
    vtkNew<vtkRenderWindow> renWin;
    renWin->SetSize(1024,1024);
    renWin->AddRenderer(ren);
    vtkNew<vtkRenderWindowInteractor> iren;
    iren->SetRenderWindow(renWin);
    vtkNew<vtkInteractorStyleTrackballCamera> style;
    iren->SetInteractorStyle(style);
    iren->Initialize();
    iren->Start();


    return 0;
}

在代码中有详细的说明,等有空我会讲解一下。


http://www.kler.cn/a/327071.html

相关文章:

  • 餐饮业的数字化转型:JSP订餐管理系统的设计与开发
  • Java 中压缩图片并应用 EXIF 旋转信息
  • VIVO Android面试题及参考答案
  • 利用Gurobi追溯模型不可行原因的四种方案及详细案例
  • 算法,递归和迭代
  • 软件设计与体系结构
  • 速盾:cdn加速什么好?
  • 【Linux探索学习】第二弹——Linux的基础指令(中)——夯实基础第二篇
  • 25考研咨询周开启,西安电子科技大学是否改考408??
  • HarmonyOS Next系列之水波纹动画特效实现(十三)
  • ClickHouse入库时间与实际相差8小时问题
  • 升级FreeBSD13.2到14.1-RELEASE
  • 树和二叉树知识点大全及相关题目练习【数据结构】
  • golang 获取证书的生效及过期时间
  • 【论文笔记】Flamingo: a Visual Language Model for Few-Shot Learning
  • Redis篇(应用案例 - 附近商户)(持续更新迭代)
  • Pgsql 数据库操作
  • 【运动控制】关于GPIO通用输入口是NPN型数字输入
  • Grafana指标汉化
  • 【测试-BUG篇】软件测试的BUG知识你了解多少呢?
  • 自动驾驶系列—DOW(开门预警):让每一次开门都更安心
  • 水囊在消防灭火工作中的作用
  • 机器人的性能指标
  • C++ | Leetcode C++题解之第448题找到所有数组中消失的数字
  • 使用 pypdf 给 PDF 添加目录书签
  • 如何避免IP污染