当前位置: 首页 > article >正文

Windows 环境搭建 CUDA 和 cuDNN 详细教程

CUDA

  1. CUDA(Compute Unified Device Architecture)是由NVIDIA公司推出的一个并行计算平台和编程模型,它允许开发者使用NVIDIA GPU进行通用计算(即GPGPU),从而加速各种计算密集型任务。CUDA提供了一套基于C/C++的编程语言扩展,使得开发者能够编写在GPU上运行的代码,利用GPU的并行处理能力来提升程序性能。

  2. CUDA的架构包括多个核心概念,如线程、线程块、网格以及内存模型。线程是CUDA中最小的执行单位,线程块是一组线程的集合,它们可以共享数据和同步操作。网格则是由多个线程块组成,用于执行大规模的并行计算任务。CUDA的内存模型包括全局内存、共享内存、常量内存和纹理内存,它们各自有不同的访问速度和用途。

  3. NVIDIA发布的CUDA Toolkit 12.0,这是多年来的第一个主要版本,它支持NVIDIA Hopper和Ada
    Lovelace架构的新功能,并提供了新的编程模型和性能优化。此外,CUDA Toolkit 12.2也已发布,引入了对NVIDIA Hopper(H100)GPU的支持,以及异构内存管理(HMM)等新特性。

  4. CUDA技术在科学计算、大数据分析、机器学习和图形处理等领域有广泛应用。例如,在深度学习领域,CUDA与TensorFlow、PyTorch等深度学习框架深度整合,提供了高效的计算加速。

CUDA安装步骤

  1. 查看本机设备NVIDIA显卡对应的驱动版本和CUDA版本,PowerShell中输入命令 nvidia-smi;可以看到驱动Driver和CUDA的版本;或者利用NVIDIA控制面板按照系统信息->组件->NVCUDA64.DLL查看详细CUDA版本;
    在这里插入图片描述
    在这里插入图片描述

  2. 确定本机设备显卡的算力:https://developer.nvidia.com/cuda-gpus;可以看到本机设备显卡3060的计算算力为8.6;
    在这里插入图片描述
    在这里插入图片描述

  3. 安装CUDA Toolkit:https://developer.nvidia.com/cuda-toolkit-archive;选择本机设备显卡需要的CUDA Toolkit版本下载;
    在这里插入图片描述

  4. 按照下图的1-2-3-4-5的顺序点击,进行下载;
    在这里插入图片描述

  5. 点击下载好的的 exe 进行安装;
    在这里插入图片描述

  6. 默认路径即可,此时是临时数据;
    在这里插入图片描述
    在这里插入图片描述

  7. 进入安装界面,选择继续;
    在这里插入图片描述
    在这里插入图片描述

  8. 选择自定义安装,全选;

在这里插入图片描述
在这里插入图片描述

  1. 确定安装路径,进行安装;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  1. 安装结束;
    在这里插入图片描述
  2. 验证是否安装成功,PowerShell输入命令:nvcc -V,返回如下即表示安装成功。
    在这里插入图片描述

cuDNN

cuDNN(CUDA Deep Neural Network library)是NVIDIA推出的一个深度学习加速库,它为深度神经网络提供了高度优化的GPU加速原语。cuDNN特别针对深度学习中常见的操作进行了优化,如前向和后向卷积、池化层、归一化和激活层等,从而大幅提升了深度学习模型训练和推理的性能。
cuDNN的主要特点包括:

  1. Tensor Core加速:支持多种卷积操作的Tensor Core加速,包括2D卷积、3D卷积、分组卷积、深度可分离卷积等。
  2. 运行时融合:通过新的运算符、启发式算法和融合迅速编译内核,提高了内存和计算效率。
  3. 多精度支持:支持FP32、FP16、BF16和TF32浮点格式以及INT8和UINT8整数格式,允许开发者根据需要选择不同的精度和性能平衡。
  4. 灵活的API:提供了C API和开源的C++前端API,方便用户使用。
  5. 广泛的框架支持:与多个流行的深度学习框架集成,如TensorFlow、PyTorch、Caffe等。

cuDNN安装步骤

  1. 下载官网:https://developer.nvidia.com/cudnn-downloads
    在这里插入图片描述
  2. 按照 1-2-3-4-5 的步骤点击选择,进行下载;
    在这里插入图片描述
  3. 解压下载下来的压缩包,里面有includelibbin三个文件夹和LICENSE文件;

在这里插入图片描述

  1. 将下载文件解压后放换到NVIDIA GPU TookitC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3)里对应的目录binincludelib中。
    (1)将下载下来的cudnn中bin文件拷贝到NVIDIA GPU Tookit的bin中。
    在这里插入图片描述
    在这里插入图片描述

(2)将下载下来的cudnn中include文件拷贝到NVIDIA GPU Tookit的include中。
在这里插入图片描述
在这里插入图片描述

(3)将下载下来的cudnn中lib\x64中文件拷贝到NVIDIA GPU Tookit目录x64\lib中。

在这里插入图片描述
在这里插入图片描述

  1. 验证安装是否成功:“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3\extras\demo_suite>”,然后分别运行里的 bandwidthTest.exedeviceQuery.exe,有PASS即代表成功。
    在这里插入图片描述
    在这里插入图片描述

http://www.kler.cn/a/329819.html

相关文章:

  • 【git】如何删除本地分支和远程分支?
  • Jupyter notebook中运行dos指令运行方法
  • 增广卡尔曼滤波AKF的要点分析
  • lwip单网卡多ip的实现
  • 从前端视角看设计模式之创建型模式篇
  • electron 打包后的 exe 文件,运行后是空白窗口
  • 大数据毕业设计选题推荐-重庆旅游景点数据分析系统-Python-Hive-Hadoop-Spark
  • Git 与 GUI 工具
  • STM32的ADC技术详解
  • 龙芯1B开发板自检程序
  • 828华为云征文|部署在线论坛网站 Flarum
  • 【STM32单片机_(HAL库)】4-3-1【定时器TIM】串口打印功能打开
  • MongoDB mongoose 的 save、insert 和 create 方法的比较
  • 算力共享系统中数据平面和控制平面
  • 富格林:正确指引远离欺诈黑幕
  • JAVASE总结
  • 学习threejs,添加环境光和点光源
  • 工具介绍---效率高+实用
  • 优化Mysql
  • [C++] 剖析AVL树功能的实现原理
  • 滚雪球学MySQL[11.2讲]:MySQL未来学习方向:大数据、云计算与迁移路径
  • [极客大挑战 2019]RCE ME1
  • Spring Security中自定义cors配置
  • 【算法篇】回溯算法类(1)(笔记)
  • 虚拟机U盘启动
  • 使用 Git 帮助文档