当前位置: 首页 > article >正文

解决方案:梯度提升树(Gradient Boosting Trees)跟GBDT(Gradient Boosting Decision Trees)有什么区别

文章目录

  • 一、现象
  • 二、解决方案
      • 梯度提升树(GBT)
      • GBDT
      • 相同点
      • 区别


一、现象

在工作中,在机器学习中,时而会听到梯度提升树(Gradient Boosting Trees)跟GBDT(Gradient Boosting Decision Trees,GBDT),会容易混淆,所以整理一下

二、解决方案

梯度提升树(Gradient Boosting Trees,GBT)和GBDT(Gradient Boosting Decision Trees)实际上指的是相同的算法,只是名称上的缩写略有不同。这两种称呼都代表了同一种机器学习技术,即通过迭代地训练决策树来逐步提升模型性能的方法。

梯度提升树(GBT)

GBT是梯度提升算法的一种实现,它使用决策树作为基学习器。在每次迭代中,GBT添加一个新的决策树来预测前一个模型的残差(即预测值与实际值之间的差异)。这个过程一直持续,直到达到预定的树的数量或者模型的性能不再显著提升。

GBDT

GBDT是梯度提升树的一个更具体的称呼,强调了决策树(Decision Trees)的使用。它同样是一种梯度提升算法,通过逐步添加决策树来减少模型的预测误差。

相同点

  • 算法基础:两者都是基于梯度提升的算法,使用决策树作为基学习器。
  • 目标:两者都旨在通过迭代地添加树模型来最小化损失函数,提高预测的准确性。
  • 应用:两者都广泛应用于分类、回归、甚至排名和排序问题。

区别

  • 术语使用:GBT和GBDT在术语上略有不同,GBT可能更偏向于强调梯度提升的通用性,而GBDT则更明确指出了决策树的使用。
  • 侧重点:GBT可能在某些文献中用来泛指使用梯度提升方法的树模型,而GBDT则更侧重于决策树的应用。

在实际应用中,这两个术语通常可以互换使用,特别是在讨论算法的基本原理和实现时。重要的是理解背后的算法机制和如何应用它来解决具体的机器学习问题。


http://www.kler.cn/a/330623.html

相关文章:

  • 安卓投屏电脑最详细教程
  • 从阿拉伯数字看大端小端字节序
  • android刷机
  • Windows 安装 Docker 和 Docker Compose
  • Elixir语言的学习路线
  • Git最便捷的迁移方式
  • 已经部署了ssl证书,网站仍被Chrome标记为不安全怎么办?
  • golang grpc初体验
  • OpenEuler配置本地yum源
  • 排序算法之快速排序
  • 【Qt】控件概述 (1)
  • MySQL 分组
  • 完美解决Idea中如何对Java Agent进行断点调试的方式
  • 动态规划
  • Stream流的中间方法
  • 本地生活服务项目有哪些:如何利用本地生活市场,打开线下流量!
  • oracle 定时任务每月27号到月底
  • 信息安全工程师(13)网络攻击一般过程
  • 【分布式微服务云原生】Docker常用命令指南
  • 【预备理论知识——1】深度学习:概率论概述
  • Redis入门第五步:Redis持久化
  • 什么是“0day漏洞”?
  • 【leetcode】 45.跳跃游戏 ||
  • 如何快速自定义一个Spring Boot Starter!!
  • 更新-Python OS
  • 基于SpringCloud的微服务架构下安全开发运维准则