当前位置: 首页 > article >正文

《OpenCV 计算机视觉》—— Harris角点检测、SIFT特征检测

文章目录

  • 一、Harris 角点检测
    • 1.基本思想
    • 2.检测步骤
    • 3.OpenCV实现
  • 二、SIFT特征检测
    • 1. SIFT特征检测的基本原理
    • 2. SIFT特征检测的特点
    • 3. OpenCV 实现

一、Harris 角点检测

OpenCV中的Harris角点检测是一种基于图像灰度值变化的角点提取算法,它通过计算每个像素点的响应函数来确定是否为角点。Harris角点检测算法的基本思想和步骤如下:

1.基本思想

Harris角点检测算法基于图像中角点的局部特征,角点处图像灰度变化明显,且向任何方向移动变化都很大。通过计算每个像素点的响应函数,并设置阈值来确定角点。

2.检测步骤

  1. 灰度化:将彩色图像转换为灰度图像,以便进行后续处理。

  2. 计算图像梯度:使用Sobel等算子计算图像在x和y方向上的梯度。这些梯度反映了图像在水平和垂直方向上的亮度变化。

  3. 计算梯度积方向矩阵(自相关矩阵):对于每个像素点,根据其周围的梯度值计算自相关矩阵。这个矩阵包含了该点x方向梯度的平方和、y方向梯度的平方和以及x方向梯度与y方向梯度的乘积。

  4. 计算角点响应函数:根据自相关矩阵计算Harris响应函数,其定义为 R = det ( M ) − k ⋅ trace ( M ) 2 R = \text{det}(M) - k \cdot \text{trace}(M)^2 R=det(M)ktrace(M)2,其中 M M M为自相关矩阵, det ( M ) \text{det}(M) det(M)为其行列式, trace ( M ) \text{trace}(M) trace(M)为其迹, k k k为一个经验参数,通常在0.04到0.06之间。

  5. 非极大值抑制:对于计算得到的响应函数图像,进行非极大值抑制,即保留局部最大值点,将其余点设为0,以消除重复检测的角点。

  6. 阈值化:根据设定的阈值,将响应函数图像中低于阈值的点排除,以得到最终的角点位置。

3.OpenCV实现

在OpenCV中,可以使用cv2.cornerHarris()函数来实现Harris角点检测。该函数的基本语法如下:

dst = cv2.cornerHarris(src, blockSize, ksize, k[, dst[, borderType]])
  • src:输入图像,应为单通道灰度图像,数据类型为float32。

  • blockSize:角点检测中使用的邻域大小,一般为2、3、4等奇数。

  • ksize:Sobel算子的大小,用于计算x和y方向的梯度,一般为3。

  • k:Harris角点检测方程中的自由参数,一般取值为0.04到0.06。

  • dst:输出图像,与输入图像大小相同,数据类型为float32,其中每个像素点的值表示该点的Harris响应函数值。

  • borderType:像素的边界模式,默认值为cv2.BORDER_DEFAULT

  • 下图为示例图片
    在这里插入图片描述

  • Harris角点检测代码实现

    import cv2
    
    # 读取图像并转换为灰度图像
    image = cv2.imread('Ta.png')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    
    # 计算Harris角点响应图像
    dst = cv2.cornerHarris(gray, blockSize=4, ksize=3, k=0.04)
    
    # 标记检测到的角点
    image[dst > 0.05 * dst.max()] = [0, 255, 0]
    # 这里通过对角点响应进行阈值处理,标记出检测到的角点
    # 0.05 * dst.max()是一个值,大于这个值的像素点会被标记为绿色。
    
    # 显示结果图像
    cv2.imshow('Harris Corners', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
  • 结果如下:
    在这里插入图片描述

二、SIFT特征检测

**SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)**是一种在图像处理和计算机视觉领域广泛使用的特征检测算法。它主要用于检测图像中的局部特征点,并生成对应的描述符,这些特征点对图像的旋转、尺度缩放和亮度变化具有一定的不变性,同时对视角变化、仿射变换和噪声也保持一定程度的稳定性。以下是SIFT特征检测的详细介绍:

1. SIFT特征检测的基本原理

SIFT算法通过以下几个步骤来实现特征点的检测和描述:

  1. 尺度空间极值检测

    • 搜索所有尺度上的图像位置,通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。
    • 构建高斯金字塔DoG(Difference of Gaussian)金字塔,通过比较相邻尺度图像的差分来检测极值点
  2. 关键点定位

    • 在每个候选的位置上,通过拟合精细的模型(如泰勒展开)来确定关键点的精确位置和尺度。
    • 关键点的选择依据于它们的稳定程度,通常选择局部极值点作为关键点。
  3. 方向确定

    • 基于图像局部的梯度方向,为每个关键点分配一个或多个主方向。
    • 通过计算关键点周围区域的梯度幅值和方向来确定主方向,以实现旋转不变性。
  4. 关键点描述

    • 在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。
    • 将这些梯度变换成一种表示,形成关键点的描述符。描述符由关键点周围的梯度方向直方图组成,通过拼接子区域的直方图来形成最终的描述符。
    • 对描述符进行归一化处理,以增强其鲁棒性。
  • 可结合以下图片理解
    在这里插入图片描述

2. SIFT特征检测的特点

  1. 独特性:SIFT特征具有很好的独特性,即使在复杂的场景中也能有效地区分不同的特征点。
  2. 多量性:即使图像中只包含少数几个物体,也能产生大量的SIFT特征向量,为匹配提供更多的可能性。
  3. 高速性:经过优化的SIFT匹配算法可以达到实时的要求,适用于需要快速处理的应用场景。
  4. 可扩展性:SIFT特征可以很方便地与其他形式的特征向量进行联合,提高匹配的准确性和鲁棒性。

3. OpenCV 实现

  • 步骤:
    • 1.加载图像
    • 2.创建SIFT对象
    • 3.检测关键点和计算描述符
    • 4.绘制关键点
    • 5.显示图像
  • 下图为特征检测的图片
    在这里插入图片描述
  • SIFT特征检测代码实现
    import cv2
    
    # 加载图像并转换为灰度图
    image = cv2.imread('sea.jpg')
    image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
    # 在OpenCV中,使用cv2.SIFT_create()或cv2.xfeatures2d.SIFT_create()函数(取决于OpenCV的版本和配置)来创建一个SIFT对象。
    # 这个对象将用于后续的关键点检测和描述符生成。
    sift = cv2.SIFT_create()
    # 或者在某些OpenCV版本中可能需要
    # sift = cv2.xfeatures2d.SIFT_create()
    
    # 使用SIFT对象的detectAndCompute()方法来检测图像中的关键点并计算它们的描述符
    keypoints, descriptors = sift.detectAndCompute(image_gray, None)
    
    # 使用cv2.drawKeypoints()函数将检测到的关键点绘制到图像上
    image_with_keypoints = cv2.drawKeypoints(image, keypoints, None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    
    # 显示图像
    cv2.imshow('Image with Keypoints', image_with_keypoints)
    cv2.waitKey(0)  # 等待任意键盘按键
    cv2.destroyAllWindows()  # 关闭所有OpenCV窗口
    
  • 结果如下:
    在这里插入图片描述

http://www.kler.cn/a/330865.html

相关文章:

  • G1原理—2.G1是如何提升分配对象效率
  • 人工智能-机器学习之多元线性回归(项目实践一)
  • 【STM32+QT项目】基于STM32与QT的智慧粮仓环境监测与管理系统设计(完整工程资料源码)
  • 左神算法基础巩固--3
  • 使用 uniapp 开发微信小程序遇到的坑
  • C#语言的网络编程
  • 用systemd 来控制 qt 程序的启动, 停止 . 解决 qt.qpa.xcb: could not connect to display 问题
  • 工程师 - 如何配置DNS服务器
  • 基于yolov8调用本地摄像头并将读取的信息传入jsonl中
  • SpringBoot框架下的社区医院信息系统开发
  • Stream流的终结方法(二)——collect
  • 2024大二上js高级+ES6学习9.29(深/浅拷贝,正则表达式,let/const,解构赋值,箭头函数,剩余参数)
  • 并集运算的线段树维护方式
  • c++就业磁盘链式b树与b+树
  • 3. 将GitHub上的开源项目导入(clone)到本地pycharm上——深度学习·科研实践·从0到1
  • 滚雪球学MySQL[7.1讲]:安全管理
  • 【笔记】数据结构12
  • Dubbo和Http的调用有什么区别
  • 【Docker】docker的存储
  • el-table动态表头
  • 828华为云征文|部署音乐流媒体服务器 mStream
  • React返回上一个页面,会重新挂载吗
  • 【AI知识点】非独立同分布(non-iid, non-independent and identically distributed)
  • AR技术在电商行业的应用及优势有哪些?
  • 解决银河麒麟V10系统bash执行提示:无法执行:权限不够的问题
  • 远程过程调用RPC知识科普