当前位置: 首页 > article >正文

cnn突破四(生成卷积核与固定核对比)

cnn突破三中生成四个卷积核,训练6万次,91分,再训练6万次,95分,不是很满意,但又找不到问题点,所以就想了个办法,使用三个固定核,加上三层bpnet神经网络,看看效果,还别说,固定核效果不错,训练6万次,逼近96分,而且不到十秒就训练完成了,而机器自动生成卷积核要40多秒!以下是代码,做个记录,为什么图像处理中常用的卷积核效果好?

14:24 2024/9/25
已经打包,已经改成100,变化不大
然后想到,用那三个卷积核,加上三层网络,
结果太开心,稳定在96三次,时而突破97,学习6万次一共四次
如果重复学习,已经有参数,不低于97
28*28gaos后降采样成14*14,使用三个卷积核并行,变成3@12*12,
降采样到3@6*6,108全连接80-10,结束
先打包一个,太激动le,95就这样突破了

这是当天的日记。代码如下:

先看forward函数:

forward第一步;使用soblex,sobely,以及lapulas三个核,14*14-》3@12*12

  int w = 14;
            int ww = w;
            int h = 14;
            int hh = h;
            double[] A1 = new double[12 * 12]; double[] A2 = new double[12 * 12]; double[] A3 = new double[12 * 12];
            int k = 0;
            for (int j = 1; j < (h - 1); j++)
            {
                for (int i = 1; i < (w - 1); i++)
                {
                    int n0 = (j * w + i);
                 
                    double Grady = xI[n0 - 1 - ww] + 2 * xI[n0 - ww] + xI[n0 - ww + 1]
                        - xI[n0 + ww - 1] - 2 * xI[n0 + ww] - xI[n0 + ww + 1];


                    A1[k] = Grady;

                    double Gradx = xI[n0 - ww + 1] + 2 * xI[n0 + 1] + xI[n0 + ww + 1]
                         - xI[n0 - ww - 1] - 2 * xI[n0 - 1] - xI[n0 + ww - 1];

                 
                    A2[k] = Gradx;


                    double lapulas = xI[n0 + 1] + xI[n0 - 1] - 2 * xI[n0] + xI[n0 + w] + xI[n0 - w] - 2 * xI[n0];//拉普拉斯=+

                   
                    A3[k] = lapulas;

                    k++;
                }
            }

forward第二步:池化取最大,变成6*6@3

  //第二步,降级采样
           // List<double>
                hebing固定 = new List<double>();//一共36*3
            for (int i = 0; i < 6; i++)
                for (int j = 0; j < 6; j++)//
                {
                    int l = (i) * 6 + j;
                    double tempb = 0;
                   
                    for (int m = 0; m < 2; m++)
                        for (int n = 0; n < 2; n++)
                        {
                            int kk = (i * 2 + m) * 12 + j * 2 + n;

                            if (A1[kk] > tempb)
                            {
                                tempb = A1[kk];
                             

                            }
                        }
                    hebing固定.Add(tempb);
                   // hIcnn[l] = tempb;//25个数据,通过这个关系,就能找到14*14matrix中去。202409181038
                }
            for (int i = 0; i < 6; i++)
                for (int j = 0; j < 6; j++)//
                {
                    int l = (i) * 6 + j;
                    double tempb = 0;

                    for (int m = 0; m < 2; m++)
                        for (int n = 0; n < 2; n++)
                        {
                            int kk = (i * 2 + m) * 12 + j * 2 + n;

                            if (A2[kk] > tempb)
                            {
                                tempb = A2[kk];


                            }
                        }
                    hebing固定.Add(tempb);
                    // hIcnn[l] = tempb;//25个数据,通过这个关系,就能找到14*14matrix中去。202409181038
                }
            for (int i = 0; i < 6; i++)
                for (int j = 0; j < 6; j++)//
                {
                    int l = (i) * 6 + j;
                    double tempb = 0;

                    for (int m = 0; m < 2; m++)
                        for (int n = 0; n < 2; n++)
                        {
                            int kk = (i * 2 + m) * 12 + j * 2 + n;

                            if (A3[kk] > tempb)
                            {
                                tempb = A3[kk];


                            }
                        }
                    hebing固定.Add(tempb);
                    // hIcnn[l] = tempb;//25个数据,通过这个关系,就能找到14*14matrix中去。202409181038
                }

forward第三步:合并3@6*6=108,归一化后全连接

  //先观察数据,并归一化hebing固定
       
            double linshimax=0;
            for (int i = 0; i < hebing固定.Count;i++ )
            {
             
                if (hebing固定[i] > linshimax) linshimax = hebing固定[i];
            }
            hebing固定归一化=new double[108];
            for (int i = 0; i < hebing固定.Count; i++)
            {
                hebing固定归一化[i]=hebing固定[i] / linshimax;
            }
          
            hI固定 = new double[80];
            //通过w1计算输入层-隐藏层输入节点 
            for (int i = 0; i < 36 * 3; i++)//108
                for (int j = 0; j < 80; j++)//80

                    hI固定[j] += hebing固定归一化[i] * w1固定[i, j];

            //通过激活函数对隐藏层进行计算 
            for (int i = 0; i < 80; i++)
                hO固定[i] = sigmoid(hI固定[i] + bh固定[i]);
         
            yi固定 = new double[10];
            //通过w2计算隐藏层-输出层
            for (int i = 0; i < 80; i++)
                for (int j = 0; j < 10; j++)

                    yi固定[j] += hO固定[i] * w2固定[i, j];

            //通过激活函数求yo
            for (int i = 0; i < 10; i++)
                yO固定[i] = sigmoid(yi固定[i] + by固定[i]);

以上就完成了forward函数,下面再看:backward函数:

   void backcnn固定()
        {
            //对w2进行更新 
          double []deltax=new double[10];

            for (int j = 0; j < 10; j++)//10
            {
                deltax[j] = (yO固定[j] - d[j]) * dsigmoid(yO固定[j]);
                by固定[j] -= deltax[j] * learnRate;
                for (int i = 0; i < 80; i++)//
                {

            
                    w2固定[i, j] -= deltax[j] * learnRate * hO固定[i];
                    
                }
            }

            //对反向传播进行预处理 

            double[] W2 = new double[80];//
       
            for (int j = 0; j < 80; j++)
                for (int k = 0; k < 10; k++)
                    W2[j] += deltax[k] * w2固定[j, k];

            //对w1进行更新

            for (int j = 0; j < 80; j++)
            {
                double delta = dsigmoid(hO固定[j]) * W2[j];
                bh固定[j] -= delta * learnRate;
                for (int i = 0; i < 108; i++)//
                {

                    w1固定[i, j] -= delta * learnRate * hebing固定归一化[i];
                   
                }
            }
           
        }

这就完了,看看运行效果:

然后再看那个自己生成四个卷积核的cnn,对比有什么感想:

14:31 2024/9/25
另外,降采样中取最大的提示,是否高斯后也如此操作,而不是各行各列降采样?
15:37 2024/9/25
已经尝试,效果不好

这是第一个直觉上的想法,并验证,不行,第二个直觉上的想法:

我们5*5的卷积核,都不是像图像处理中的卷积核,我们自己生成的卷积核都是针对第一像素的处理,而图像处理中的卷积核,都是针对中心像素卷积的,以为这个中心对齐有效果,求证后,没有质的提升!

找不出来为什么得分在91-95之间,我就认为,自己的程序当下没有问题!

在这个自生成卷积核cnn上,我想是不是层数太少导致的,所以,我扩展了结构:

28*28-》4@24*24-》4@12*12-》16@8*8-》16@4*4-》80-》10,使用了4个5*5卷积核,以及16个5*5卷积核,让网络自己生成,期间我只是吧步长learnrate由0.2降为0.07,

这个结构程序达成的得分仍然在91-95之间,仍然不如固定核一次就能训练到96分

虽然有点沮丧,但是,我发现,我的这个cnn架构,已经和lecun的lenet-1相当,

这才是最大的成功,别人花了那么多年的成果,就这样被我突破了!

其实,想一想,还有好几个法宝都没用上,以后有机会在推进一下!

然后,我把这个固定核bpnet移植到自己的机器视觉megauning中试了试,发现速度跟不上,

然后就放弃了!

说实话,这个不如我在形状匹配中引入角点的效果,虽然时间长了一点点,但时间在500ms内能搞定,而且得分由原来的37分的确定界限,翻一番都不止!

这个固定核bpnet改成匹配,时间接近2秒,而且用识别分类的方法来找(匹配)准确位置,效果不值一提!

但可以肯定的是,cnn是可以用来定位的,但很明显人工智能的cnn显然与机器视觉在应用场景上极大的不同!

这更增强了我对机器视觉的信心!ai在场景的落地上还需要时间,我觉得用人工智能判断疾病应该有极大的空间!

哎,又好长时间没有看中医了,ai应该和中医能很好的结合!这上面我是有信心的,中医识别和分类很像cnn。

总结:人眼中有识别和匹配,但识别和匹配不一样,匹配是拉着弓,百步穿杨,而识别是那是杨树叶,或者说,那是杨树。


http://www.kler.cn/news/333599.html

相关文章:

  • 【STM32开发之寄存器版】(四)-独立看门狗IWDG
  • 深入解析 RISC-V 递归函数的栈使用:以阶乘函数为例
  • RCE_无回显
  • MES系列-MES赋能智能工厂
  • Java之队列
  • Pikachu-url重定向-不安全的url跳转
  • Redis基础三(redis的高级配置)
  • 【rCore OS 开源操作系统】Rust 字符串(可变字符串String与字符串切片str)
  • C++:STL常用算法随笔
  • Prometheus之Pushgateway使用
  • 静态路由故障排查
  • python中的copy方法
  • 为什么MySQL不建议使用delete删除数据
  • 基于springboot vue 电影推荐系统
  • 掌握 C# 多线程与异步编程
  • 408笔记|随笔记录|自用|2
  • (Linux驱动学习 - 6).Linux中断
  • JDK——java.util.function
  • [Python学习日记-39] 闭包是个什么东西?
  • 【2023工业3D异常检测文献】PointCore: 基于局部-全局特征的高效无监督点云异常检测器