当前位置: 首页 > article >正文

[笔记] 仿射变换性质的代数证明

Title: [笔记] 仿射变换性质的代数证明


文章目录

  • I. 仿射变换的代数表示
  • II. 仿射变换的性质
  • III. 同素性的代数证明
    • 1. 点变换为点
    • 2. 直线变换为直线
  • IV. 结合性的代数证明
    • 1. 直线上一点映射为直线上一点
    • 2. 直线外一点映射为直线外一点
  • V. 保持单比的代数证明
  • VI. 平行性的代数证明
  • 参考文献


I. 仿射变换的代数表示

平面上点 P ( x , y ) P(x,y) P(x,y) 经过仿射变换 T T T 变为点 P ′ ( x ′ , y ′ ) P'(x', y') P(x,y), 则两点坐标 ( x , y ) (x,y ) (x,y) ( x ′ , y ′ ) (x', y') (x,y) 之间的关系即为仿射变换的代数表示. 需注意仿射坐标系不一定是直角坐标系.

平面上的仿射变换在仿射坐标系下的代数表示为
{ x ′ = a 11 x + a 12 y + a 13 y ′ = a 21 x + a 22 y + a 23 (I-1) \left\{ \begin{aligned} x' = a_{11} x + a_{12} y + a_{13}\\ y' = a_{21} x + a_{22} y + a_{23} \end{aligned} \right. \tag{I-1} {x=a11x+a12y+a13y=a21x+a22y+a23(I-1)
其中
Δ = ∣ a 11 a 12 a 21 a 22 ∣ ≠ 0 (I-2) \Delta = \left|\begin{matrix}a_{11} &a_{12} \\ a_{21} & a_{22}\end{matrix}\right| \neq 0 \tag{I-2} Δ= a11a21a12a22 =0(I-2)
也就是仿射变换是可逆变换, 其逆变换可以写成
{ x = a 11 ′ x ′ + a 12 ′ y ′ + a 13 ′ y = a 21 ′ x ′ + a 22 ′ y ′ + a 23 ′ (I-3) \left\{ \begin{aligned} x = a'_{11} x' + a'_{12} y' + a'_{13}\\ y = a'_{21} x' + a'_{22} y' + a'_{23} \end{aligned} \right. \tag{I-3} {x=a11x+a12y+a13y=a21x+a22y+a23(I-3)
其中
Δ ′ = ∣ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ∣ ≠ 0 (I-4) \Delta' = \left|\begin{matrix}a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{matrix}\right| \neq 0 \tag{I-4} Δ= a11a21a12a22 =0(I-4)
可知
[ a 11 a 12 a 21 a 22 ] [ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] = [ 1 0 0 1 ] (I-5) \begin{bmatrix}a_{11} &a_{12} \\ a_{21} & a_{22}\end{bmatrix} \begin{bmatrix}a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} = \begin{bmatrix}1 &0 \\ 0 & 1 \end{bmatrix} \tag{I-5} [a11a21a12a22][a11a21a12a22]=[1001](I-5)

[ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 11 a 12 a 21 a 22 ] = [ 1 0 0 1 ] (I-6) \begin{bmatrix}a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} \begin{bmatrix}a_{11} &a_{12} \\ a_{21} & a_{22}\end{bmatrix} = \begin{bmatrix}1 &0 \\ 0 & 1 \end{bmatrix} \tag{I-6} [a11a21a12a22][a11a21a12a22]=[1001](I-6)


II. 仿射变换的性质

- 保持同素性 (点变换为点, 直线变换为直线)

- 保持结合性 (点和直线的结合关系)

- 保持共线三点的单比不变

- 保持直线的平行性


III. 同素性的代数证明

1. 点变换为点

定义式 (I-1) 即是证明.


2. 直线变换为直线

假设有一直线
a x + b y + c = 0 (III-2-1) ax + by + c =0 \tag{III-2-1} ax+by+c=0(III-2-1)
在仿射变换下有式 (I-3), 代入式 (III-2-1) 得到
a ( a 11 ′ x ′ + a 12 ′ y ′ + a 13 ′ ) + b ( a 21 ′ x ′ + a 22 ′ y ′ + a 23 ′ ) + c = 0 ⇒ ( a a 11 ′ + b a 21 ′ ) x ′ + ( a a 12 ′ + b a 22 ′ ) y ′ + ( a a 13 ′ + b a 23 ′ + c ) = 0 (III-2-2) \begin{aligned} a(a'_{11} x' + a'_{12} y' + a'_{13}) + b(a'_{21} x' + a'_{22} y' + a'_{23}) + c =0\\ \Rightarrow \quad (a a'_{11}+ b a'_{21}) x' + (aa'_{12} + b a'_{22}) y' +(a a'_{13} + b a'_{23} +c) = 0 \end{aligned} \tag{III-2-2} a(a11x+a12y+a13)+b(a21x+a22y+a23)+c=0(aa11+ba21)x+(aa12+ba22)y+(aa13+ba23+c)=0(III-2-2)
仿射变换后仍然满足直线方程, 仍为直线.


IV. 结合性的代数证明

1. 直线上一点映射为直线上一点

已知一点 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 在直线 a x + b y + c = 0 ax+by+c =0 ax+by+c=0 ⟺ \Longleftrightarrow 满足 a x 1 + b y 1 + c = 0 ax_1 +by_1 +c =0 ax1+by1+c=0.

下面证明仿射变换后的新点在仿射变换后的新直线上.

( x 1 , y 1 ) (x_1, y_1) (x1,y1) 经过仿射变换后得到新点 ( x 1 ′ , y 1 ′ ) (x'_1, y'_1) (x1,y1)
{ x 1 ′ = a 11 x 1 + a 12 y 1 + a 13 y 1 ′ = a 21 x 1 + a 22 y 1 + a 23 (IV-1-1) \left\{ \begin{aligned} x'_1 = a_{11} x_1 + a_{12} y_1 + a_{13}\\ y'_1 = a_{21} x_1 + a_{22} y_1 + a_{23} \end{aligned} \right. \tag{IV-1-1} {x1=a11x1+a12y1+a13y1=a21x1+a22y1+a23(IV-1-1)
由同素性式 (III-2-2), 直线 a x + b y + c = 0 ax+by+c =0 ax+by+c=0 经过仿射变换后得到新的直线方程
( a a 11 ′ + b a 21 ′ ) x ′ + ( a a 12 ′ + b a 22 ′ ) y ′ + ( a a 13 ′ + b a 23 ′ + c ) = 0 (IV-1-2) (a a'_{11}+ b a'_{21}) x' + (aa'_{12} + b a'_{22}) y' +(a a'_{13} + b a'_{23} +c) = 0 \tag{IV-1-2} (aa11+ba21)x+(aa12+ba22)y+(aa13+ba23+c)=0(IV-1-2)
将仿射变换后的新点坐标式 (IV-1-1) 代入上式的左侧得到
LHS  =   ( a a 11 ′ + b a 21 ′ ) ( a 11 x 1 + a 12 y 1 + a 13 ) ‾ + ( a a 12 ′ + b a 22 ′ ) ( a 21 x 1 + a 22 y 1 + a 23 ) ‾ + ( a a 13 ′ + b a 23 ′ + c ) =   ( a a 11 ′ + b a 21 ′ ) a 11 x 1 + ( a a 12 ′ + b a 22 ′ ) a 21 x 1 + ( a a 11 ′ + b a 21 ′ ) a 12 y 1 + ( a a 12 ′ + b a 22 ′ ) a 22 y 1 + ( a a 11 ′ + b a 21 ′ ) a 13 + ( a a 12 ′ + b a 22 ′ ) a 23 + ( a a 13 ′ + b a 23 ′ + c ) =   ( a a 11 ′ a 11 + a a 12 ′ a 21 + b a 21 ′ a 11 + b a 22 ′ a 21 ) x 1 + ( a a 11 ′ a 12 + a a 12 ′ a 22 + b a 21 ′ a 12 + b a 22 ′ a 22 ) y 1 + ( a a 11 ′ a 13 + a a 12 ′ a 23 + a a 13 ′ + b a 21 ′ a 13 + b a 22 ′ a 23 + b a 23 ′ ) + c =   [ a b ] [ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 11 a 21 ] x 1 + [ a b ] [ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 12 a 22 ] y 1 + [ a b ] { [ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 13 a 23 ] + [ a 13 ′ a 23 ′ ] } + c (IV-1-3) \begin{aligned} \text{LHS}\ =\ &(a a'_{11}+ b a'_{21})\underline{(a_{11} x_1 + a_{12} y_1 + a_{13})} + (aa'_{12} + b a'_{22}) \underline{(a_{21} x_1 + a_{22} y_1 + a_{23})} + (a a'_{13} + b a'_{23} +c)\\ =\ & (a a'_{11}+ b a'_{21})a_{11} x_1 + (aa'_{12} + b a'_{22}) a_{21} x_1 \\ {+} & (a a'_{11}+ b a'_{21}) a_{12} y_1 +(aa'_{12} + b a'_{22}) a_{22} y_1 \\ {+}& (a a'_{11}+ b a'_{21}) a_{13} + (aa'_{12} + b a'_{22}) a_{23} + (a a'_{13} + b a'_{23} +c)\\ =\ & (a a'_{11}a_{11}+ aa'_{12} a_{21} + b a'_{21}a_{11} + b a'_{22} a_{21}) x_1 \\ {+}& (a a'_{11}a_{12}+ a a'_{12} a_{22} + b a'_{21} a_{12} + b a'_{22} a_{22}) y_1\\ {+}& (a a'_{11} a_{13}+ aa'_{12} a_{23} + a a'_{13} + b a'_{21} a_{13} + b a'_{22} a_{23} + b a'_{23}) \\ +& c\\ =\ & \begin{bmatrix} a &b\end{bmatrix} \begin{bmatrix} a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21}\end{bmatrix} x_1 \\ {+}& \begin{bmatrix} a &b\end{bmatrix} \begin{bmatrix} a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22}\end{bmatrix} y_1 \\ {+}& \begin{bmatrix} a &b\end{bmatrix} \left\{\begin{bmatrix} a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} \begin{bmatrix} a_{13} \\ a_{23}\end{bmatrix}+ \begin{bmatrix} a'_{13} \\ a'_{23}\end{bmatrix}\right\} \\ {+}& c \end{aligned} \tag{IV-1-3} LHS = = ++= +++= +++(aa11+ba21)(a11x1+a12y1+a13)+(aa12+ba22)(a21x1+a22y1+a23)+(aa13+ba23+c)(aa11+ba21)a11x1+(aa12+ba22)a21x1(aa11+ba21)a12y1+(aa12+ba22)a22y1(aa11+ba21)a13+(aa12+ba22)a23+(aa13+ba23+c)(aa11a11+aa12a21+ba21a11+ba22a21)x1(aa11a12+aa12a22+ba21a12+ba22a22)y1(aa11a13+aa12a23+aa13+ba21a13+ba22a23+ba23)c[ab][a11a21a12a22][a11a21]x1[ab][a11a21a12a22][a12a22]y1[ab]{[a11a21a12a22][a13a23]+[a13a23]}c(IV-1-3)
由式 (I-6) 可知
[ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 11 a 21 ] = [ 1 0 ] (IV-1-4) \begin{bmatrix}a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} \begin{bmatrix}a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix}1 \\ 0 \end{bmatrix} \tag{IV-1-4} [a11a21a12a22][a11a21]=[10](IV-1-4)

[ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 12 a 22 ] = [ 0 1 ] (IV-1-5) \begin{bmatrix}a'_{11} &a'_{12} \\ a'_{21} & a'_{22}\end{bmatrix} \begin{bmatrix}a_{12} \\ a_{22}\end{bmatrix} = \begin{bmatrix}0 \\ 1 \end{bmatrix} \tag{IV-1-5} [a11a21a12a22][a12a22]=[01](IV-1-5)
由仿射变换式 (I-1) 可知原点 ( 0 , 0 ) (0,0) (0,0) 的像为 ( a 13 , a 23 ) (a_{13}, a_{23}) (a13,a23), 即
{ x o ′ = a 11 0 + a 12 0 + a 13 = a 13 y o ′ = a 21 0 + a 22 0 + a 23 = a 23 (IV-1-6) \left\{ \begin{aligned} x'_{o} = a_{11} 0 + a_{12} 0 + a_{13} = a_{13}\\ y'_{o} = a_{21} 0 + a_{22} 0 + a_{23} = a_{23} \end{aligned} \right. \tag{IV-1-6} {xo=a110+a120+a13=a13yo=a210+a220+a23=a23(IV-1-6)
相反地, 原点的像 ( a 13 , a 23 ) (a_{13}, a_{23}) (a13,a23) 经过仿射变换逆映射式 (I-3) 后回到原点, 即
{ 0 = a 11 ′ a 13 + a 12 ′ a 23 + a 13 ′ 0 = a 21 ′ a 13 + a 22 ′ a 23 + a 23 ′ (IV-1-7) \left\{ \begin{aligned} 0 = a'_{11} a_{13} + a'_{12} a_{23} + a'_{13}\\ 0 = a'_{21} a_{13} + a'_{22} a_{23} + a'_{23} \end{aligned} \right. \tag{IV-1-7} {0=a11a13+a12a23+a130=a21a13+a22a23+a23(IV-1-7)
上式写成矩阵形式为
[ a 11 ′ a 12 ′ a 21 ′ a 22 ′ ] [ a 13 a 23 ] + [ a 13 ′ a 23 ′ ] = [ 0 0 ] (IV-1-8) \begin{bmatrix}a'_{11} & a'_{12}\\a'_{21} &a'_{22} \end{bmatrix} \begin{bmatrix}a_{13} \\ a_{23} \end{bmatrix} + \begin{bmatrix}a'_{13} \\ a'_{23} \end{bmatrix} = \begin{bmatrix}0 \\0 \end{bmatrix} \tag{IV-1-8} [a11a21a12a22][a13a23]+[a13a23]=[00](IV-1-8)
将式 (IV-1-4)、(IV-1-5)、(IV-1-8) 代入式 (IV-1-3), 即仿射变换后的新点坐标式 (IV-1-1) 左侧为
LHS  =   [ a b ] [ 1 0 ] x 1 + [ a b ] [ 0 1 ] y 1 + [ a b ] [ 0 0 ] + c =   a x 1 + b y 1 + c =   0 (IV-1-9) \begin{aligned} \text{LHS}\ =\ & \begin{bmatrix} a &b\end{bmatrix} \begin{bmatrix} 1 \\ 0\end{bmatrix} x_1 {+} \begin{bmatrix} a &b\end{bmatrix} \begin{bmatrix} 0 \\ 1\end{bmatrix} y_1 {+} \begin{bmatrix} a &b\end{bmatrix} \begin{bmatrix} 0 \\ 0\end{bmatrix} {+} c\\ =\ & a x_1 {+} b y_1 {+} c\\ = \ &0 \end{aligned} \tag{IV-1-9} LHS = = = [ab][10]x1+[ab][01]y1+[ab][00]+cax1+by1+c0(IV-1-9)
也就是说, 点 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 经过仿射变换后得到的新点 ( x 1 ′ , y 1 ′ ) (x'_1, y'_1) (x1,y1) 满足直线 a x + b y + c = 0 ax+by+c =0 ax+by+c=0 进过仿射变换后得到的新直线方程式 (IV-1-2).

即直线上一点经过仿射变换后仍然在经过仿射变换后的直线上.


2. 直线外一点映射为直线外一点

如果存在仿射变换 φ \varphi φ 可以将直线 l l l 外一点 P P P 映射为直线 l ′ l' l 上一点 P ′ P' P, 即
φ : l ↦ l ′ φ : P ↦ P ′ P ∉ l , P ′ ∈ l ′ (IV-2-1) \varphi:l \mapsto l'\\ \varphi:P \mapsto P' \\ P \notin l, P' \in l'\tag{IV-2-1} φ:llφ:PPP/l,Pl(IV-2-1)
因为仿射变换的逆变换仍然是仿射变换, 即 φ − 1 \varphi^{-1} φ1 仍然是仿射变换.

由已证明的 “直线上一点映射为直线上一点”, 可知经过逆仿射变换 φ − 1 \varphi^{-1} φ1, 直线 l ′ l' l 上点 P ′ P' P 映射为直线 l l l 上点 P P P.

即已知像点 P ′ P' P 在直线 l ′ l' l 上时, 原像点 P P P 必在直线 l l l 上.

假设矛盾, 证毕.


V. 保持单比的代数证明

共线三点 P ( x , y ) P(x,y) P(x,y) P 1 ( x 1 , y 1 ) P_1(x_1, y_1) P1(x1,y1) P 2 ( x 2 , y 2 ) P_2(x_2, y_2) P2(x2,y2) 的单比为
( P 1 P 2 P ) = x − x 1 x − x 2 = y − y 1 y − y 2 = k (V-1) (P_1 P_2 P) = \frac{x-x_1}{x - x_2}=\frac{y-y_1}{y-y_2}=k \tag{V-1} (P1P2P)=xx2xx1=yy2yy1=k(V-1)

x − x 1 = k ( x − x 2 ) y − y 1 = k ( y − y 2 ) (V-2) {x-x_1}= k(x - x_2)\\ {y-y_1}= k(y-y_2) \tag{V-2} xx1=k(xx2)yy1=k(yy2)(V-2)
经过仿射变换后得到 P ′ ( x ′ , y ′ ) P'(x',y') P(x,y) P 1 ′ ( x 1 ′ , y 1 ′ ) P'_1(x'_1, y'_1) P1(x1,y1) P 2 ′ ( x 2 ′ , y 2 ′ ) P'_2(x'_2, y'_2) P2(x2,y2). 由仿射变换的结合性可知, P ′ P' P P 1 ′ P'_1 P1 P 2 ′ P'_2 P2 三点仍然共线. 共线三点可计算单比
( P 1 ′ P 2 ′ P ′ ) = x ′ − x 1 ′ x ′ − x 2 ′ = y ′ − y 1 ′ y ′ − y 2 ′ = k ′ (V-3) (P'_1 P'_2 P') = \frac{x'-x'_1}{x' - x'_2}=\frac{y'-y'_1}{y'-y'_2}=k' \tag{V-3} (P1P2P)=xx2xx1=yy2yy1=k(V-3)
由仿射变换式 (I-1) 并结合式 (V-2), 可知
k ′ = x ′ − x 1 ′ x ′ − x 2 ′ = a 11 x + a 12 y + a 13 − ( a 11 x 1 + a 12 y 1 + a 13 ) a 11 x + a 12 y + a 13 − ( a 11 x 2 + a 12 y 2 + a 13 ) = a 11 ( x − x 1 ) + a 12 ( y − y 1 ) a 11 ( x − x 2 ) + a 12 ( y − y 2 ) = k a 11 ( x − x 2 ) + k a 12 ( y − y 2 ) a 11 ( x − x 2 ) + a 12 ( y − y 2 ) = k (V-4) \begin{aligned} k' &= \frac{x'-x'_1}{x' - x'_2} \\ &= \frac{a_{11} x + a_{12} y + a_{13} - (a_{11} x_1 + a_{12} y_1 + a_{13})}{a_{11} x + a_{12} y + a_{13} - (a_{11} x_2 + a_{12} y_2 + a_{13})}\\ &= \frac{a_{11} (x-x_1) + a_{12} (y-y_1)}{a_{11} (x-x_2) + a_{12} (y-y_2)}\\ &= \frac{k a_{11} (x-x_2) + k a_{12} (y-y_2)}{a_{11} (x-x_2) + a_{12} (y-y_2)}\\ &= k \end{aligned}\tag{V-4} k=xx2xx1=a11x+a12y+a13(a11x2+a12y2+a13)a11x+a12y+a13(a11x1+a12y1+a13)=a11(xx2)+a12(yy2)a11(xx1)+a12(yy1)=a11(xx2)+a12(yy2)ka11(xx2)+ka12(yy2)=k(V-4)
即单比保持不变.


VI. 平行性的代数证明

已知两条直线 l 1 l_1 l1 l 2 l_2 l2 平行, 则该两条直线的方程可写为
{ l 1 : a x + b y + c 1 = 0 l 2 : a x + b y + c 2 = 0 (VI-1) \left\{ \begin{aligned} l_1: ax+by+c_1=0\\ l_2: ax+by+c_2=0 \end{aligned} \right. \tag{VI-1} {l1:ax+by+c1=0l2:ax+by+c2=0(VI-1)
其中 c 1 ≠ c 2 c_1 \neq c_2 c1=c2. (注意仿射坐标系不一定为直角坐标系)

由同素性证明中式 (III-1-2) , 直线 l 1 l_1 l1 l 2 l_2 l2 经过仿射变换的方程式分别为
l 1 ′ : ( a a 11 ′ + b a 21 ′ ) x ′ + ( a a 12 ′ + b a 22 ′ ) y ′ + ( a a 13 ′ + b a 23 ′ + c 1 ) = 0 l 2 ′ : ( a a 11 ′ + b a 21 ′ ) x ′ + ( a a 12 ′ + b a 22 ′ ) y ′ + ( a a 13 ′ + b a 23 ′ + c 2 ) = 0 l'_1: (a a'_{11}+ b a'_{21}) x' + (aa'_{12} + b a'_{22}) y' +(a a'_{13} + b a'_{23} +c_1) = 0\\ l'_2: (a a'_{11}+ b a'_{21}) x' + (aa'_{12} + b a'_{22}) y' +(a a'_{13} + b a'_{23} +c_2) = 0 l1:(aa11+ba21)x+(aa12+ba22)y+(aa13+ba23+c1)=0l2:(aa11+ba21)x+(aa12+ba22)y+(aa13+ba23+c2)=0
其中 a a 13 ′ + b a 23 ′ + c 1 ≠ a a 13 ′ + b a 23 ′ + c 2 a a'_{13} + b a'_{23} +c_1 \neq a a'_{13} + b a'_{23} +c_2 aa13+ba23+c1=aa13+ba23+c2, 而两者的方向数相同.

可知经过仿射变换后 l 1 ′ l'_1 l1 l 2 ′ l'_2 l2 仍然平行.


参考文献

[1] 梅向明, 刘增贤, 王汇淳, 王智秋, 高等几何(第四版), 高等教育出版社, 2020


版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/woyaomaishu2/article/details/142771571
本文作者:wzf@robotics_notes



http://www.kler.cn/news/339267.html

相关文章:

  • PyQt入门指南一 框架介绍
  • 一分钟掌握 Java22 新特性
  • STM32-HAL库 驱动DS18B20温度传感器 -- 2024.10.8
  • 数据结构——排序(插入排序)
  • VAD 论文学习
  • 每日OJ题_牛客_分组_枚举+二分_C++_Java
  • OpenFeign 工作原理源码记录
  • OpenFegin
  • 【多重循环在Java中的应用】
  • 【如何学习计组】——基本概念与原理
  • 大数据新视界 --大数据大厂之数据血缘追踪与治理:确保数据可追溯性
  • windows配置java环境变量
  • 基于java+springboot的宠物商店、宠物管理系统
  • 大数据新视界 --大数据大厂之 Presto 性能优化秘籍:加速大数据交互式查询
  • LeetCode:134. 加油站(Java 贪心)
  • 【笔记】DDD领域驱动设计
  • 在一台电脑上实现网页与exe程序使用udp通信
  • Overleaf 无法显示图片
  • Spring Data(学习笔记)
  • Slot attention理解