当前位置: 首页 > article >正文

GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting 论文解读

目录

一、概述

二、相关工作

1、多视图的三维重建

2、前馈重建

三、LRM

1、编码器

2、解码器

3、NeRF渲染

四、GS-LRM 

1、输入处理

2、Transformer

3、损失函数

五、实验

六、局限


一、概述

        该论文提出了一种利用稀疏输入图像高效预测3D高斯原语的方法,也是第一个基于Transformer架构以及大量数据集生成通用,可扩展的,高效的3DGS大型重建模型的方法GS-LRM,他的前身是LRM。

(1)将输入图像分块为patch tokens,并且通过自注意力和MLP层的transformer来处理,最终回归3DGS原语参数。

(2)可以应用于不同数据集上训练处理物体和场景捕获,并且达到SOTA水平。

二、相关工作

1、多视图的三维重建

        以往的三维重建包括稀疏视角下的重建SfM和密集场景下的重建MVS,都是基于点云的且渲染效果不佳。

        近期深度学习发展,也诞生了基于深度学习的MVS,并且运用前馈的方式达到高质量渲染。

        对于该论文,最重要的点就是通过多视角的transformer来生成3DGS原语,在保证渲染质量的同时,满足更大的数据量,这也是以往使用成本体积方法的一大挑战。

2、前馈重建

        以往的前馈重建考虑基于CNN的方法使用point splatting或者不透明度生成的方式来估计点或者多视角图像(MPIs),而我们采用GS splatting的方式,相当于结合了这两种方法,并且进行又一次创新。

        LRM方法基于三平面NeRF作为场景表示,存在分辨率受限和渲染效率低问题。

        PixelSplat使用epipolar-based的方法,更加关注场景级别重建,LGM使用U-Net的方法更加关注对象的生成。

        该论文直接用一个通用的Transformer来回归3DGS原语,密集的自注意力层更为有效的学习多视角和一般的重建先验(深度,光追),渲染效果也优于epipolar-based和U-Net-based的并行工作。

三、LRM

        LRM网络架构分为三个部分:编码器(单图像->图像特征),解码器(图像特征->三维三平面空间表示),NeRF渲染(三平面表示->渲染神经辐射场)

1、编码器

        编码器使用一个自蒸馏训练的模型DINO,用来学习图像中显著内容的结构和纹理,相比于ResNet,DINO能够表示更为精细的结构和纹理信息;相比于使用普通的ViT或者CLIP一类聚合特征的方法,LRM使用了整个特征序列,保留序列信息。

        DINO模型采用ViT-B/16架构,将图像编码为1025个token,每个token为32*32*768,图像特征为h_i

2、解码器

        首先我们处理相机特征为c,相机特征为一个20维参数向量,包括4*4相机外参矩阵flatten后的16维,相机焦距2维,相机主点2维。之后将相机特征引入一个MLP中映射为一个高维相机嵌入\tilde{c}

        然后将相机嵌入\tilde{c}与图像特征h_i进行concat,得到三平面隐藏特征f^{init},或者叫可学习的嵌入,通道为1024维。

        将f^{init}输入到解码器,解码器由三部分构成,交叉注意力、自注意力、MLP三部分,其中交叉注意力与原始图像特征进行交叉注意运算,经过每一个部分都要使用高维相机嵌入\tilde{c}对隐藏特征f^{init}进行自适应归一化操作,来调制隐藏特征。最终保证输出编码器的特征为1024维特征。

3、NeRF渲染

        将编码器的输出经过反卷积+上采样,得到三平面特征,并通过MLP回归得到NeRF渲染参数,通过体渲染得到3D模型。

四、GS-LRM 

        GS-LRM相较于LRM最大的提高在于,不再使用原有的encoder-decoder框架,而是使用完全基于transformer的架构。

1、输入处理

        对于同一物体,每次使用多视角图片叠加Plucker光线作为输入(一般是四视角),对于图片的处理类似于ViT,将图片进行进行9通道的拆分,然后将9通道进行concat后放入线性层升维到高维特征。

2、Transformer

        对于输入图像张量引入L层的Transformer模块,不断重复Transformer模块,输出特征T_{ij}^L

        将特征输入到线性层,回归输出每个像素的12个高斯参数,包括3维RGB,3维尺度变化,4维旋转四元数、1维不透明度、1维光线距离。

        利用12个高斯参数对每个像素进行渲染,得到Merged Gaussians完整的3DGS模型。

3、损失函数

        损失函数使用MSE和基于VGG的LPIPS。

五、实验

        对于场景数据论文使用Objaverse数据集训练,并使用Amazon Barkeley数据集和Google数据集进行推理,对于对象数据集完全依赖于Realstate10K。

        在场景数据集(ABO和GSO数据集)和对象数据集(RealState10k)上都取得了SOTA性能。

六、局限

        局限包括三个部分:分辨率限制,相机参数已知,无法估计不可见部分而出现重建幻觉。

参考1:LRM: Large Reconstruction Model for Single Image to 3D 

参考2:GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting


http://www.kler.cn/a/349854.html

相关文章:

  • Node.js 的底层原理
  • 不背单词快捷键(不背单词键盘快捷键)
  • 计算机网络 (60)蜂窝移动通信网
  • 力扣面试150 快乐数 循环链表找环 链表抽象 哈希
  • 《多阶段渐进式图像修复》学习笔记
  • 36、【OS】【Nuttx】OSTest分析(2):环境变量测试
  • 软考《信息系统运行管理员》- 5.2 信息系统数据资源例行管理
  • MySQL初识
  • SQL 自学:事务处理的COMMIT 和 ROLLBACK 语句的运用
  • PG 17 增量备份功能介绍
  • 等保测评实战:SQL Server数据库的安全评估
  • 弧度和角度
  • ARINC 429总线协议
  • Redis知识应用索引指南
  • 【LeetCode】动态规划—95. 不同的二叉搜索树 II(附完整Python/C++代码)
  • 数据特征工程:离散趋势指标分析
  • RAG(检索增强生成)面经(1)
  • 前端开发设计模式——命令模式
  • QT元对象系统特性详细介绍(信号槽、类型信息、动态设置属性)(注释)
  • Git Commit 规范
  • DBdoctor推出无Agent轻量级纳管解决方案
  • 低代码策略量化平台更新|大模型agents生态的一些思考
  • STM32F407 定时器实例解析
  • 录屏工具TOP10,探索你最爱的免费屏幕录制软件!
  • 华为OD机试真题-最佳种树距离-2024年OD统一考试(E卷)
  • Spring Boot:中小型医院网站的性能优化