Spark 3.3.x版本中的动态分区裁剪(DPP,Dynamic Partition Pruning)的实现及应用剖析
文章目录
- Dynamic Partition Pruning(DPP)的作用
- DPP生效的一些要点
- DPP生效的简单SQL示例
- DPP生效SQL的解析示例
- Deduplicate Correlated Subquery
- Rewrite Predicates as Join
- Rewrite Join With Dynamic Subquery
- Rewrite Dynamic Subquery as Dynamic Expression
- Push Down Dynamic Expression And Materialization
- Pruning Partitions at Runtime
- 扩展知识
- DPP的设计实现
- 类结构
- DynamicPruningSubquery
- DynamicPruningExpression
- 生成DynamicPruningSubquery
- Subquery(子查询)的定义及分类
- 依赖子查询
- 非依赖子查询
- 几类常见的Subquery
- Lateral
- Exists
- IN
- Scala
- Table Valued Function
Dynamic Partition Pruning(DPP)的作用
一种通用的描述是,DPP在分区级别过滤数据,注意它有别于Partitioin Filter
。DPP是在execute
阶段生效,对从数据源加载的InputPartition
(Spark内部计算数据时定义的数据类型)进一步过滤,减少传递到下游算子的数据量;而Partition Filter
则在Planning阶段就可以生效,对要加载的Catalog Partition
进行过滤,因此这两类Filter
有先后顺序,即先利用Partition Filter
加载可见分区,然后再利用DPP对加载后的分区过滤。
希望通过这篇文章,能够帮助你手动推出DPP的完整处理过程。
当然DPP要过滤的对象是InputPartition
还是其它类似的数据结构,则跟具体的实现有关,这里仅描述一种通常的处理过程。
注意区别如下4个概念:
Partition Filter:仅包含分区列的过滤条件,右值在planning阶段就可以确定。
Data Filter:仅包含非分区列的过滤条件,右值不确定。
Runtime Filter:可以包含分区列、非分区列的过滤条件,右值只能在execute阶段才能确定 (bloom filter)。
Source Filter:包含非分区列的过滤条件,右值是字面值,ODPS 表,传递给ODPS服务。其中Runtime Filter也值得再深入讨论,因为Spark还会利用Subquery + Aggregation组合而成的子计划,优化JOIN计划(跟Mysql 中的Indexed Join的功能相似),主要是基于等值JOIN条件,构建BloomFilter数据结构,并将其作为Filter插入到JOIN的Application Side(如LEFT JOIN,就是指LEFT SIDE)。
更多Runtime Filter的故事,待后续的章节。
DPP生效的一些要点
-
将关联子查询/IN表达式/Exists表达式等转换成
LEFT SEMI JOIN
的子查询,并被封装成DynamicPruningExpression
; -
DynamicPruningExpression被会下推到pruning plan,例如
a LEFT JOIN b
,其中a即是pruning plan,而b是filtering plan
; -
在默认参数配置下,
Filtering plan
被转换成可以被广播的子查询,它的输出列集是JOIN KEYs。 -
默认情况下DPP只能复用已有的Broadcast Stage起作用:
设置 spark.sql.optimizer.dynamicPartitionPruning.reuseBroadcastOnly=false,允许基于代价模型,进行DPP。 -
Filtering Plan的子计划得有过滤条件:
Bad: WHERE a.id IN (SELECT id FROM b WHERE a.id = b.id)
Good: WHERE a.id IN (SELECT id FROM b WHERE a.id = b.id AND b.id IS NOT NULL) -
当不限制broadcast only时,可以适当调整如下的参数优化DPP:
默认情况下,spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio=0.5,在计算代价时,用于估算DPP生效时,pruning侧(被过滤)的数据集的减少数据量,只有当减少的量大于filtering侧的读入数据量时,才会应用DPP;
默认情况下,spark.sql.optimizer.dynamicPartitionPruning.useStats=true,使得DPP的过滤效果的估算更加准备,避免性能回退,但对于ODPS表上的查询,又依赖于如下的两上特殊参数:
spark.sql.odps.prunedPartitions.statistic.enable=true,默认允许收集统计信息
spark.sql.odps.prunedPartitions.statistic.countThreshold=512,默认分区数量小于此值时才收集 -
尽量避免非等值的关联过滤
形如:WHERE a.id IN (SELECT b.id FROM b WHERE a.id > b.id)
考虑转换成WHERE a.id IN (SELECT b.id FROM b WHERE b.id > 0) + JOIN的组合
DPP生效的简单SQL示例
假设表a、b拥有相同的字段定义,其中id字段是分区字段。
那么如下的SQL表示从表a中查询id字段值在子查询返回的结果集的行。
-- 其中id在表a、g表b中都是分区字段
SELECT *
FROM a
WHERE a.id IN (SELECT id FROM b WHERE id = 1)
如上面的SQL,在表a JOIN 表b时有过滤条件a.id IN (SELECT id FROM b WHERE id = 1)
,因此可以尝试应用DPP优化规则,将过滤条件下推到读表a,基于分区字段id
进行分区过滤。
故开启DPP优化,SQL的执行逻辑是,读取表a中,id字段在满足SELECT id FROM b WHERE id = 1
条件的分区数据,然后与表b JOIn;如果没有开启DPP优化,SQL的执行逻辑是,全量读表a的数据,然后与表b JOIN。
经过DPP优化后,上述示例最终等价转换为LEFT SEMI JOIN
的句型:
SELECT *
FROM a
LEFT SEMI JOIN (SELECT id FROM b WHERE id = 1)
ON a.id = b.id
DPP生效SQL的解析示例
SELECT *
FROM a
WHERE a.id IN (SELECT id
FROM b
WHERE b.id = a.id AND b.id > 0)
经过SQL解析后,生成的初始逻辑计划树,简单表示如下,由于IN条件的执行依赖于外部表的字段,即a.id,因此是不能直接进行物化执行的,需要对这类关联/依赖子查询进行改写。
Project [*]
Filter [a.id] In (ListQuery []:
Project [b.id]
Filter [b.id = a.id, b.id > 0]
Relation [b.id])
Relation [a.*]
带有DPP信息的逻辑执行计划:
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Filter [DynamicPruningSubquery(Project [b.id]
Filter [b.id > 0]
Relation [b.id])]
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
最终的物理执行计划:
-- Physical Plan
-- DatasourceV2Strategy物化逻辑计划树时,会下推DynamicPruning类型的过滤表达式到BatchScanExec
-- 在这里就是DynamicPruningExpression,由于FilterExec只有一个表达式,因此会被完全消除。
ProjectExec [a.*]
BroadcastJoinExec [a.*] [b.id = a.id, b.id = a.id]
BatchScanExec [a.*] [runtimeFilters = DynamicPruningExpression(
InSubqueryExec(a.id,
SubqueryBroadcastExec(Project [b.id]
Filter [b.id > 0]
BatchScanExec [b.id])))]
BroadcaseExchangeExec
ProjectExec [b.id]
FilterExec [b.id > 0]
BatchScanExec [b.id]
Deduplicate Correlated Subquery
Rule Name: PullupCorrelatedPredicates
对于示例中的SQL句型,会生成如下的逻辑计划(其中b.id = a.id
会被单独抽出来,以备后续的处理),ListQuery
的子计划,由于没有了外部关联/依赖,因此可以独立地执行。
Project [*]
Filter [a.id] In (ListQuery [b.id = a.id]:
Project [b.id]
Filter [b.id > 0]
Relation [b.id])
Relation [a.*]
PullupCorrelatedPredicates
的实现过程及分析如下:
object PullupCorrelatedPredicates extends Rule[LogicalPlan] with PredicateHelper {
/**
* Returns the correlated predicates and a updated plan that removes the outer references.
*/
private def pullOutCorrelatedPredicates(
sub: LogicalPlan,
outer: LogicalPlan): (LogicalPlan, Seq[Expression]) = {
// 存储所有的逻辑计划树与关联过滤条件的映射关系,由于关联过滤条件不能被对应的逻辑计划树直接处理
// 因此需要抽取出来,以便将这些关联过滤条件,上推到与outer join结点中,作为新的join conditions。
val predicateMap = scala.collection.mutable.Map.empty[LogicalPlan, Seq[Expression]]
/** Determine which correlated predicate references are missing from this plan. */
def missingReferences(p: LogicalPlan): AttributeSet = {
val localPredicateReferences = p.collect(predicateMap)
.flatten
.map(_.references)
.reduceOption(_ ++ _)
.getOrElse(AttributeSet.empty)
localPredicateReferences -- p.outputSet
}
// Simplify the predicates before pulling them out.
// 先简化表达式,然后自底向上,抽出关联过滤条件,同时在必然的结点中,追加由于
// 需要某个子树额外输出的attributes。
val transformed = BooleanSimplification(sub) transformUp {
case f @ Filter(cond, child) =>
// 返回关联过滤条件和非关联过滤条件,例如
// SELECT * FROM t1 a
// WHERE
// NOT EXISTS (SELECT * FROM t1 b WHERE a.i = b.i AND b.i > 0)
// EXISTS子查询处理后的结果为:(Seq(a.i = b.i), Seq(b.i > 0))
val (correlated, local) =
splitConjunctivePredicates(cond).partition(containsOuter)
// Rewrite the filter without the correlated predicates if any.
correlated match {
case Nil => f
case xs if local.nonEmpty =>
// 如果子查询存在非关联的过滤条件时,就会将这些过滤条件组成一个新的Filter结点,
// 替换原来的孩子计划树
val newFilter = Filter(local.reduce(And), child)
predicateMap += newFilter -> xs
newFilter
case xs =>
// 只存在关联过滤条件时,保持原来的孩子计划树
predicateMap += child -> xs
child
}
case p @ Project(expressions, child) =>
// 如果当前的sub计划树的存在project,则可能由于抽取了孩子子树的关联过滤条件,而
// 这些filters中的某些attributes,并不会出现在project结点中,因此这里需要将这些
// 丢失的属性追加到project中,才能保证被“上推”的过滤条件能够正确读取相应的字段。
val referencesToAdd = missingReferences(p)
if (referencesToAdd.nonEmpty) {
Project(expressions ++ referencesToAdd, child)
} else {
p
}
case a @ Aggregate(grouping, expressions, child) =>
// 同理Project结点的处理方式,只不过这里多了grouping表达式的处理,需要也把这些
// 不需要参与聚合的属性,追加到聚合过程中,以便关联过滤条件“上移”后,能够正确读取。
val referencesToAdd = missingReferences(a)
if (referencesToAdd.nonEmpty) {
Aggregate(grouping ++ referencesToAdd, expressions ++ referencesToAdd, child)
} else {
a
}
case p =>
p
}
// Make sure the inner and the outer query attributes do not collide.
// In case of a collision, change the subquery plan's output to use
// different attribute by creating alias(s).
val baseConditions = predicateMap.values.flatten.toSeq
val outerPlanInputAttrs = outer.inputSet
val (newPlan, newCond) = if (outerPlanInputAttrs.nonEmpty) {
// 由于当前子查询的output attributes和父查询的input attributes可能存在重复的属性,
// 因此要上推的关联过滤条件,也可能存在重复的属性,
// 如果不去重,关联过滤条件被上推到JOIN后,由于可能产生`a = a`的情况,其中等式左边的属性
// 字段名a来自原sub计划树中,右侧字段名a来自outer计划树,显示作为JOIN条件时,会被优化成true,
// 打破预期的JOIN结构,因此这里会对这种情况进行重写,对来自sub计划树的attributes进行重命名,
// 这样就能保证新的join条件的左右两侧属性是来自于`逻辑上不同的表`。
val (plan, deDuplicatedConditions) =
DecorrelateInnerQuery.deduplicate(transformed, baseConditions, outerPlanInputAttrs)
// 返回解耦后的,新的子查询,同时返回新的JOIN条件
(plan, stripOuterReferences(deDuplicatedConditions))
} else {
// outerPlanInputAttrs为空,暂时没有想到或找到合适的用例,但一种可能的情况是
// outer plan是一个LocalRelation()的实例,它没有输出,仅仅表示一个空的集合。
(transformed, stripOuterReferences(baseConditions))
}
(newPlan, newCond)
}
private def rewriteSubQueries(plan: LogicalPlan): LogicalPlan = {
/**
* This function is used as a aid to enforce idempotency of pullUpCorrelatedPredicate rule.
* In the first call to rewriteSubqueries, all the outer references from the subplan are
* pulled up and join predicates are recorded as children of the enclosing subquery expression.
* The subsequent call to rewriteSubqueries would simply re-records the `children` which would
* contains the pulled up correlated predicates (from the previous call) in the enclosing
* subquery expression.
*/
def getJoinCondition(newCond: Seq[Expression], oldCond: Seq[Expression]): Seq[Expression] = {
if (newCond.isEmpty) oldCond else newCond
}
def decorrelate(
sub: LogicalPlan,
outer: LogicalPlan,
handleCountBug: Boolean = false): (LogicalPlan, Seq[Expression]) = {
if (SQLConf.get.decorrelateInnerQueryEnabled) {
DecorrelateInnerQuery(sub, outer, handleCountBug)
} else {
pullOutCorrelatedPredicates(sub, outer)
}
}
plan.transformExpressionsWithPruning(_.containsPattern(PLAN_EXPRESSION)) {
case ScalarSubquery(sub, children, exprId, conditions) if children.nonEmpty =>
val (newPlan, newCond) = decorrelate(sub, plan)
ScalarSubquery(newPlan, children, exprId, getJoinCondition(newCond, conditions))
case Exists(sub, children, exprId, conditions) if children.nonEmpty =>
val (newPlan, newCond) = pullOutCorrelatedPredicates(sub, plan)
Exists(newPlan, children, exprId, getJoinCondition(newCond, conditions))
case ListQuery(sub, children, exprId, childOutputs, conditions) if children.nonEmpty =>
// 对应示例的SQL句型:WHERE a IN (subquery)
val (newPlan, newCond) = pullOutCorrelatedPredicates(sub, plan)
ListQuery(newPlan, children, exprId, childOutputs, getJoinCondition(newCond, conditions))
case LateralSubquery(sub, children, exprId, conditions) if children.nonEmpty =>
val (newPlan, newCond) = decorrelate(sub, plan, handleCountBug = true)
LateralSubquery(newPlan, children, exprId, getJoinCondition(newCond, conditions))
}
}
/**
* Pull up the correlated predicates and rewrite all subqueries in an operator tree..
*/
def apply(plan: LogicalPlan): LogicalPlan = plan.transformUpWithPruning(
_.containsPattern(PLAN_EXPRESSION)) {
case j: LateralJoin =>
val newPlan = rewriteSubQueries(j)
// Since a lateral join's output depends on its left child output and its lateral subquery's
// plan output, we need to trim the domain attributes added to the subquery's plan output
// to preserve the original output of the join.
if (!j.sameOutput(newPlan)) {
Project(j.output, newPlan)
} else {
newPlan
}
// Only a few unary nodes (Project/Filter/Aggregate) can contain subqueries.
case q: UnaryNode =>
rewriteSubQueries(q)
case s: SupportsSubquery =>
rewriteSubQueries(s)
}
}
Rewrite Predicates as Join
Rule Name: RewritePredicateSubquery
经过PullupCorrelatedPredicates
优化规则的应用,原本的关联过滤条件会从子查询中抽取出来,生成一个新ListQuery
结点。随后的过程,就是经过RewritePredicateSubquery
规则,再次改写,生成合适的JOIN结点。
-- Before
Project [a.*]
Filter [a.id] In (ListQuery:
Project [b.id]
Filter [(b.id IN (SELECT id FROM c WHERE c.id>0) = a.id, b.id > 0]
Relation [b.id])
Relation [a.*]
-- After
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
RewritePredicateSubquery
的实现过程及分析如下,:
object RewritePredicateSubquery extends Rule[LogicalPlan] with PredicateHelper {
private def buildJoin(
outerPlan: LogicalPlan,
subplan: LogicalPlan,
joinType: JoinType,
condition: Option[Expression]): Join = {
// Deduplicate conflicting attributes if any.
val dedupSubplan = dedupSubqueryOnSelfJoin(outerPlan, subplan, None, condition)
// 生成一个新的JOIN计划,其中dedupSubplan就是,ListQuery结点对应的子计划
// condition就是抽取出来的关联子查询
Join(outerPlan, dedupSubplan, joinType, condition, JoinHint.NONE)
}
/**
* 解耦自我join的子查询,型如:
* SELECT * FROM t1 a
* WHERE a.i EXISTS (SELECT i FROM t1 b WHERE a.i = b.i)
* 逻辑上会被转换成如下的SQL:
* SELECT a.* FROM t1 a
* LEFT SEMI JOIN (SELECT i FROM t1) b
* ON a.i = b.i
* 不难看出,a与b对应的真实表是同一个,因此可能存在a.i = b.i被解析为true literal,导致
* 解析问题。
* 但从Spark 3.3.x版本的测试看,SPARK-21835、SPARK-26078的示例总是不会相同的attributes,
* 可能是在某个历史版本才出现的问题吧。
**/
private def dedupSubqueryOnSelfJoin(
outerPlan: LogicalPlan,
subplan: LogicalPlan,
valuesOpt: Option[Seq[Expression]],
condition: Option[Expression] = None): LogicalPlan = {
// SPARK-21835: It is possibly that the two sides of the join have conflicting attributes,
// the produced join then becomes unresolved and break structural integrity. We should
// de-duplicate conflicting attributes.
// SPARK-26078: it may also happen that the subquery has conflicting attributes with the outer
// values. In this case, the resulting join would contain trivially true conditions (e.g.
// id#3 = id#3) which cannot be de-duplicated after. In this method, if there are conflicting
// attributes in the join condition, the subquery's conflicting attributes are changed using
// a projection which aliases them and resolves the problem.
val outerReferences = valuesOpt.map(values =>
AttributeSet.fromAttributeSets(values.map(_.references))).getOrElse(AttributeSet.empty)
val outerRefs = outerPlan.outputSet ++ outerReferences
val duplicates = outerRefs.intersect(subplan.outputSet)
if (duplicates.nonEmpty) {
condition.foreach { e =>
val conflictingAttrs = e.references.intersect(duplicates)
if (conflictingAttrs.nonEmpty) {
throw QueryCompilationErrors.conflictingAttributesInJoinConditionError(
conflictingAttrs, outerPlan, subplan)
}
}
val rewrites = AttributeMap(duplicates.map { dup =>
dup -> Alias(dup, dup.toString)()
}.toSeq)
val aliasedExpressions = subplan.output.map { ref =>
rewrites.getOrElse(ref, ref)
}
Project(aliasedExpressions, subplan)
} else {
subplan
}
}
def apply(plan: LogicalPlan): LogicalPlan = plan.transformWithPruning(
_.containsAnyPattern(EXISTS_SUBQUERY, LIST_SUBQUERY)) {
// 匹配的SQL子句型,如:WHERE a.id IN (SELECT id FROM b WHERE id = 1)
case Filter(condition, child)
if SubqueryExpression.hasInOrCorrelatedExistsSubquery(condition) =>
val (withSubquery, withoutSubquery) =
splitConjunctivePredicates(condition)
.partition(SubqueryExpression.hasInOrCorrelatedExistsSubquery)
// 构建新的过滤表达式,不带有exist/in (subquery)模式的表达式
// Construct the pruned filter condition.
val newFilter: LogicalPlan = withoutSubquery match {
case Nil => child
case conditions => Filter(conditions.reduce(And), child)
}
// Filter the plan by applying left semi and left anti joins.
withSubquery.foldLeft(newFilter) {
case (p, Exists(sub, _, _, conditions)) =>
val (joinCond, outerPlan) = rewriteExistentialExpr(conditions, p)
buildJoin(outerPlan, sub, LeftSemi, joinCond)
case (p, InSubquery(values, ListQuery(sub, _, _, _, conditions))) =>
// Deduplicate conflicting attributes if any.
// 到这里conditions,已经包含了原本在sub树中的关联过滤条件,这里再次尝试
// 消除self join的情况,但实际测试中,相关的单元测试的SQL总是不会出现self join
// 的问题,因此newSub始终等于sub。
val newSub = dedupSubqueryOnSelfJoin(p, sub, Some(values))
// 为所有的JOIN keys生成一个新的等值条件,左侧来自于outer plan,右侧来自于sub
// 如果condidtioins包含了某个key的等值条件,这里依然会重复生成,因此有一定的冗余
// 不过会在后续的过程被优化掉。
val inConditions = values.zip(newSub.output).map(EqualTo.tupled)
// 递归对join条件进行重写,替换其中的exists/in表达式为ExistenceJoin,
// 例如有如下的改写逻辑(其中a.id = (b.id IN (SELECT id FROM t2))是带有subquery的predicate:
// Filter(a.id = (b.id IN (SELECT id FROM t2)), Relation(b))
// ==>
// Filter(
// Join(Relation(b),
// Subquery(SELECT id FROM t2),
// ExistenceJoin,
// b.id = t2.id,
// ExistenceJoin)
// ))
//
val (joinCond, outerPlan) = rewriteExistentialExpr(inConditions ++ conditions, p)
// 生成一个新的JOIN,以替换原来的形如:
//Filter i#254 IN (list#253 [i#254 && (i#254 = i#257)])
//: +- Project [i#257]
//: +- Relation default.t1[i#257,j#258] parquet
//+- Relation default.t1[i#254,j#255] parquet
// 转换为
//Join LeftSemi, ((i#254 = i#257) AND (i#254 = i#257))
//:- Relation default.t1[i#254,j#255] parquet
//+- Project [i#257]
// +- Relation default.t1[i#257,j#258] parquet
Join(outerPlan, newSub, LeftSemi, joinCond, JoinHint.NONE)
case other => other // 这里删除了其它匹配模式的处理逻辑,不仅仅包含上面的两个case
}
// 匹配的SQL句型,如:SELECT a.id IN (SELECT id FROM b WHERE id = 1)
case u: UnaryNode if u.expressions.exists(
SubqueryExpression.hasInOrCorrelatedExistsSubquery) =>
var newChild = u.child
u.mapExpressions(expr => {
val (newExpr, p) = rewriteExistentialExpr(Seq(expr), newChild)
newChild = p
// The newExpr can not be None
newExpr.get
}).withNewChildren(Seq(newChild))
}
/**
* Given a predicate expression and an input plan, it rewrites any embedded existential sub-query
* into an existential join. It returns the rewritten expression together with the updated plan.
* Currently, it does not support NOT IN nested inside a NOT expression. This case is blocked in
* the Analyzer.
*/
private def rewriteExistentialExpr(
exprs: Seq[Expression],
plan: LogicalPlan): (Option[Expression], LogicalPlan) = {
var newPlan = plan
val newExprs = exprs.map { e =>
e.transformDownWithPruning(_.containsAnyPattern(EXISTS_SUBQUERY, IN_SUBQUERY)) {
case Exists(sub, _, _, conditions) =>
val exists = AttributeReference("exists", BooleanType, nullable = false)()
newPlan =
buildJoin(newPlan, sub, ExistenceJoin(exists), conditions.reduceLeftOption(And))
exists
case Not(InSubquery(values, ListQuery(sub, _, _, _, conditions))) =>
val exists = AttributeReference("exists", BooleanType, nullable = false)()
// Deduplicate conflicting attributes if any.
val newSub = dedupSubqueryOnSelfJoin(newPlan, sub, Some(values))
val inConditions = values.zip(sub.output).map(EqualTo.tupled)
// To handle a null-aware predicate not-in-subquery in nested conditions
// (e.g., `v > 0 OR t1.id NOT IN (SELECT id FROM t2)`), we transform
// `inCondition` (t1.id=t2.id) into `(inCondition) OR ISNULL(inCondition)`.
//
// For example, `SELECT * FROM t1 WHERE v > 0 OR t1.id NOT IN (SELECT id FROM t2)`
// is transformed into a plan below;
// == Optimized Logical Plan ==
// Project [id#78, v#79]
// +- Filter ((v#79 > 0) OR NOT exists#83)
// +- Join ExistenceJoin(exists#83), ((id#78 = id#80) OR isnull((id#78 = id#80)))
// :- Relation[id#78,v#79] parquet
// +- Relation[id#80] parquet
val nullAwareJoinConds = inConditions.map(c => Or(c, IsNull(c)))
val finalJoinCond = (nullAwareJoinConds ++ conditions).reduceLeft(And)
newPlan = Join(newPlan, newSub, ExistenceJoin(exists), Some(finalJoinCond), JoinHint.NONE)
Not(exists)
case InSubquery(values, ListQuery(sub, _, _, _, conditions)) =>
val exists = AttributeReference("exists", BooleanType, nullable = false)()
// Deduplicate conflicting attributes if any.
val newSub = dedupSubqueryOnSelfJoin(newPlan, sub, Some(values))
val inConditions = values.zip(newSub.output).map(EqualTo.tupled)
val newConditions = (inConditions ++ conditions).reduceLeftOption(And)
newPlan = Join(newPlan, newSub, ExistenceJoin(exists), newConditions, JoinHint.NONE)
exists
}
}
(newExprs.reduceOption(And), newPlan)
}
}
Rewrite Join With Dynamic Subquery
Rule Name: PartitionPruning
-- Before
-- id是一个分区字段
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
-- After
-- Cond1: Left Semi Join,可以对左侧表进行动态过滤
-- Cond2: id是分区字段,因此过滤条件能够被下推到scan
-- Cond3: JOIN右侧表计划树,包含Filter条件,b.id > 0
-- Cond4:
-- JOIN Key/Pruning key是a.id/b.id,基于列的stats信息估算出,DPP的过滤比filterRatio
-- 当a.id的distincts数量 > b.id的distinct数量时,filterRatio=1-distinct_b_id/distinct_a_id
-- 其它情况则是spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio = 0.5
-- 得到裁剪收益benefits:filterRatio * stats_size_a > stats_size_b,因此可以广播表b中id字段的数据集。
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Filter [DynamicPruningSubquery(Project [b.id]
Filter [b.id > 0]
Relation [b.id])]
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
PartitionPruning
的实例逻辑及分析:
object PartitionPruning extends Rule[LogicalPlan] with PredicateHelper with JoinSelectionHelper {
/**
* Insert a dynamic partition pruning predicate on one side of the join using the filter on the
* other side of the join.
* - to be able to identify this filter during query planning, we use a custom
* DynamicPruning expression that wraps a regular In expression
* - we also insert a flag that indicates if the subquery duplication is worthwhile and it
* should run regardless of the join strategy, or is too expensive and it should be run only if
* we can reuse the results of a broadcast
*/
private def insertPredicate(
pruningKey: Expression,
pruningPlan: LogicalPlan,
filteringKey: Expression,
filteringPlan: LogicalPlan,
joinKeys: Seq[Expression],
partScan: LogicalPlan): LogicalPlan = {
val reuseEnabled = conf.exchangeReuseEnabled
val index = joinKeys.indexOf(filteringKey)
// prunning plan被裁剪掉的数据集大小,大于于右边表时,才是有收益的
lazy val hasBenefit = pruningHasBenefit(pruningKey, partScan, filteringKey, filteringPlan)
if (reuseEnabled || hasBenefit) {
// 只有开启了stage reuse功能,实际上只能是reuse broadcast stage;或是有收益的,才会插入DPP
// insert a DynamicPruning wrapper to identify the subquery during query planning
Filter(
DynamicPruningSubquery(
pruningKey,
filteringPlan,
joinKeys,
index,
conf.dynamicPartitionPruningReuseBroadcastOnly || !hasBenefit),
pruningPlan)
} else {
// abort dynamic partition pruning
pruningPlan
}
}
/**
* Given an estimated filtering ratio we assume the partition pruning has benefit if
* the size in bytes of the partitioned plan after filtering is greater than the size
* in bytes of the plan on the other side of the join. We estimate the filtering ratio
* using column statistics if they are available, otherwise we use the config value of
* `spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio`.
*/
private def pruningHasBenefit(
partExpr: Expression,
partPlan: LogicalPlan,
otherExpr: Expression,
otherPlan: LogicalPlan): Boolean = {
// get the distinct counts of an attribute for a given table
def distinctCounts(attr: Attribute, plan: LogicalPlan): Option[BigInt] = {
plan.stats.attributeStats.get(attr).flatMap(_.distinctCount)
}
// the default filtering ratio when CBO stats are missing, but there is a
// predicate that is likely to be selective
val fallbackRatio = conf.dynamicPartitionPruningFallbackFilterRatio
// the filtering ratio based on the type of the join condition and on the column statistics
val filterRatio = (partExpr.references.toList, otherExpr.references.toList) match {
// filter out expressions with more than one attribute on any side of the operator
case (leftAttr :: Nil, rightAttr :: Nil)
if conf.dynamicPartitionPruningUseStats =>
// get the CBO stats for each attribute in the join condition
val partDistinctCount = distinctCounts(leftAttr, partPlan)
val otherDistinctCount = distinctCounts(rightAttr, otherPlan)
val availableStats = partDistinctCount.isDefined && partDistinctCount.get > 0 &&
otherDistinctCount.isDefined
if (!availableStats) {
fallbackRatio
} else if (partDistinctCount.get.toDouble <= otherDistinctCount.get.toDouble) {
// there is likely an estimation error, so we fallback
fallbackRatio
} else {
1 - otherDistinctCount.get.toDouble / partDistinctCount.get.toDouble
}
case _ => fallbackRatio
}
val estimatePruningSideSize = filterRatio * partPlan.stats.sizeInBytes.toFloat
val overhead = calculatePlanOverhead(otherPlan)
estimatePruningSideSize > overhead
}
/**
* Calculates a heuristic overhead of a logical plan. Normally it returns the total
* size in bytes of all scan relations. We don't count in-memory relation which uses
* only memory.
*/
private def calculatePlanOverhead(plan: LogicalPlan): Float = {
val (cached, notCached) = plan.collectLeaves().partition(p => p match {
case _: InMemoryRelation => true
case _ => false
})
val scanOverhead = notCached.map(_.stats.sizeInBytes).sum.toFloat
val cachedOverhead = cached.map {
case m: InMemoryRelation if m.cacheBuilder.storageLevel.useDisk &&
!m.cacheBuilder.storageLevel.useMemory =>
m.stats.sizeInBytes.toFloat
case m: InMemoryRelation if m.cacheBuilder.storageLevel.useDisk =>
m.stats.sizeInBytes.toFloat * 0.2
case m: InMemoryRelation if m.cacheBuilder.storageLevel.useMemory =>
0.0
}.sum.toFloat
scanOverhead + cachedOverhead
}
/**
* Search a filtering predicate in a given logical plan
*/
private def hasSelectivePredicate(plan: LogicalPlan): Boolean = {
plan.exists {
case f: Filter => isLikelySelective(f.condition)
case _ => false
}
}
/**
* To be able to prune partitions on a join key, the filtering side needs to
* meet the following requirements:
* (1) it can not be a stream
* (2) it needs to contain a selective predicate used for filtering
*/
private def hasPartitionPruningFilter(plan: LogicalPlan): Boolean = {
!plan.isStreaming && hasSelectivePredicate(plan)
}
private def prune(plan: LogicalPlan): LogicalPlan = {
plan transformUp {
// skip this rule if there's already a DPP subquery on the LHS of a join
case j @ Join(Filter(_: DynamicPruningSubquery, _), _, _, _, _) => j
case j @ Join(_, Filter(_: DynamicPruningSubquery, _), _, _, _) => j
case j @ Join(left, right, joinType, Some(condition), hint) =>
// 只会对JOIN结构生效
var newLeft = left
var newRight = right
// extract the left and right keys of the join condition
val (leftKeys, rightKeys) = j match {
case ExtractEquiJoinKeys(_, lkeys, rkeys, _, _, _, _, _) => (lkeys, rkeys)
case _ => (Nil, Nil)
}
// checks if two expressions are on opposite sides of the join
def fromDifferentSides(x: Expression, y: Expression): Boolean = {
def fromLeftRight(x: Expression, y: Expression) =
!x.references.isEmpty && x.references.subsetOf(left.outputSet) &&
!y.references.isEmpty && y.references.subsetOf(right.outputSet)
fromLeftRight(x, y) || fromLeftRight(y, x)
}
splitConjunctivePredicates(condition).foreach {
case EqualTo(a: Expression, b: Expression)
if fromDifferentSides(a, b) =>
val (l, r) = if (a.references.subsetOf(left.outputSet) &&
b.references.subsetOf(right.outputSet)) {
a -> b
} else {
b -> a
}
// there should be a partitioned table and a filter on the dimension table,
// otherwise the pruning will not trigger
var filterableScan = getFilterableTableScan(l, left)
if (filterableScan.isDefined && canPruneLeft(joinType) &&
hasPartitionPruningFilter(right)) {
// 左边表是prunning plan,右边表是filtering plan
// 只有当右侧表有过滤条件时,才会会左边表插入DPP predicate
newLeft = insertPredicate(l, newLeft, r, right, rightKeys, filterableScan.get)
} else {
filterableScan = getFilterableTableScan(r, right)
if (filterableScan.isDefined && canPruneRight(joinType) &&
hasPartitionPruningFilter(left) ) {
newRight = insertPredicate(r, newRight, l, left, leftKeys, filterableScan.get)
}
}
case _ =>
}
// 返回一个新的plan结点
Join(newLeft, newRight, joinType, Some(condition), hint)
}
}
override def apply(plan: LogicalPlan): LogicalPlan = plan match {
// Do not rewrite subqueries.
case s: Subquery if s.correlated => plan
case _ if !conf.dynamicPartitionPruningEnabled => plan
case _ => prune(plan)
}
}
Rewrite Dynamic Subquery as Dynamic Expression
Rule Name: PlanDynamicPruningFilters
-- Before
-- id是一个分区字段
-- Cond1: Left Semi Join,可以对左侧表进行动态过滤
-- Cond2: id是分区字段,因此过滤条件能够被下推到scan
-- Cond3: JOIN右侧表计划树,包含Filter条件,b.id > 0
-- Cond4: JOIN Key/ Pruning key是a.id/b.id,基于列的stats信息估算出,DPP的过滤比filterRatio
-- 当a.id的distincts数量 > b.id的distinct数量时,filterRatio=1-distinct_b_id/distinct_a_id
-- 其它情况则是spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio = 0.5
-- 得到裁剪收益benefits:filterRatio * stats_size_a > stats_size_b,因此可以广播b
-- 假设benefits = ture
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Filter [DynamicPruningSubquery(Project [b.id]
Filter [b.id > 0]
Relation [b.id]]
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
-- After
-- case1: 支持exchange reuse,而且计划树中存在broadcast计划,且与filtering plan相同,即DPS,时
-- DynamicPruningExpression(InSubqueryExec(value, broadcastValues, exprId))
-- case2: filtering plan只能被广播时
-- DynamicPruningExpression(Literal.TrueLiteral)
-- case3: 即使不能走broadcast,但裁剪有收益
-- DynamicPruningExpression(expressions.InSubquery(
-- Seq(value), ListQuery(aggregate, childOutputs = aggregate.output)))
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Filter [DynamicPruningExpression(
InSubqueryExec(a.id,
SubqueryBroadcastExec(Project [b.id]
Filter [b.id > 0]
Relation [b.id]))
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
PlanDynamicPruningFilters
优化规则的实现逻辑及分析:
case class PlanDynamicPruningFilters(sparkSession: SparkSession)
extends Rule[SparkPlan] with PredicateHelper {
/**
* Identify the shape in which keys of a given plan are broadcasted.
*/
private def broadcastMode(keys: Seq[Expression], output: AttributeSeq): BroadcastMode = {
val packedKeys = BindReferences.bindReferences(HashJoin.rewriteKeyExpr(keys), output)
HashedRelationBroadcastMode(packedKeys)
}
override def apply(plan: SparkPlan): SparkPlan = {
if (!conf.dynamicPartitionPruningEnabled) {
return plan
}
plan.transformAllExpressionsWithPruning(_.containsPattern(DYNAMIC_PRUNING_SUBQUERY)) {
case DynamicPruningSubquery(
value, buildPlan, buildKeys, broadcastKeyIndex, onlyInBroadcast, exprId) =>
val sparkPlan = QueryExecution.createSparkPlan(
sparkSession, sparkSession.sessionState.planner, buildPlan)
// Using `sparkPlan` is a little hacky as it is based on the assumption that this rule is
// the first to be applied (apart from `InsertAdaptiveSparkPlan`).
val canReuseExchange = conf.exchangeReuseEnabled && buildKeys.nonEmpty &&
plan.exists {
case BroadcastHashJoinExec(_, _, _, BuildLeft, _, left, _, _) =>
left.sameResult(sparkPlan)
case BroadcastHashJoinExec(_, _, _, BuildRight, _, _, right, _) =>
right.sameResult(sparkPlan)
case _ => false
}
if (canReuseExchange) {
// 只有当支持复用broadcast stage时,才能够应用DPP,因此这里会通过broadcast机制拿到
// filtering plan的结果集,以在运行时对pruning plan(被裁剪的plan)的描述分区进一步删减
val executedPlan = QueryExecution.prepareExecutedPlan(sparkSession, sparkPlan)
val mode = broadcastMode(buildKeys, executedPlan.output)
// plan a broadcast exchange of the build side of the join
val exchange = BroadcastExchangeExec(mode, executedPlan)
val name = s"dynamicpruning#${exprId.id}"
// place the broadcast adaptor for reusing the broadcast results on the probe side
val broadcastValues =
SubqueryBroadcastExec(name, broadcastKeyIndex, buildKeys, exchange)
DynamicPruningExpression(InSubqueryExec(value, broadcastValues, exprId))
} else if (onlyInBroadcast) {
// it is not worthwhile to execute the query, so we fall-back to a true literal
// 如果显示指定了只能利用broadcast实现DPP,同时整个计划树中不存在与filtering plan相同的
// broadcast stage时,返回字面量true,表示dpp失效。
DynamicPruningExpression(Literal.TrueLiteral)
} else {
// 如果不强制DPP只能依赖broadcast机制生效,同时DPP裁剪是有收益的,那么就改写SQL,构建一个子查询,
// 采集filtering plan的与join key相关的distinct数据集,以便在运行时对prunning plan裁剪
// we need to apply an aggregate on the buildPlan in order to be column pruned
val alias = Alias(buildKeys(broadcastKeyIndex), buildKeys(broadcastKeyIndex).toString)()
val aggregate = Aggregate(Seq(alias), Seq(alias), buildPlan)
DynamicPruningExpression(expressions.InSubquery(
Seq(value), ListQuery(aggregate, childOutputs = aggregate.output)))
}
}
}
}
Push Down Dynamic Expression And Materialization
Strategy Name: DataSourceV2Strategy
从逻辑计划树转换为物理计划树的过程中,会将DPP过滤条件,下推到BatchScanExec
算子,以便能够在生成RDD时(execution阶段)能够应用这些条件,过滤分区。
-- Before
-- case1: 支持exchange reuse,而且计划树中存在broadcast计划,且与filtering plan相同,即DPS,时
-- DynamicPruningExpression(InSubqueryExec(value, broadcastValues, exprId))
-- case2: filtering plan只能被广播时
-- DynamicPruningExpression(Literal.TrueLiteral)
-- case3: 即使不能走broadcast,但裁剪有收益
-- DynamicPruningExpression(expressions.InSubquery(
-- Seq(value), ListQuery(aggregate, childOutputs = aggregate.output)))
Project [a.*]
LeftSemiJoin [b.id = a.id, b.id = a.id]
Filter [DynamicPruningExpression(
InSubqueryExec(a.id,
SubqueryBroadcastExec(Project [b.id]
Filter [b.id > 0]
Relation [b.id])))]
Relation [a.*]
Project [b.id]
Filter [b.id > 0]
Relation [b.id]
-- Physical Plan
-- DatasourceV2Strategy物化逻辑计划树时,会下推DynamicPruning类型的过滤表达式到BatchScanExec
-- 在这里就是DynamicPruningExpression,由于FilterExec只有一个表达式,因此会被完全消除
ProjectExec [a.*]
BroadcastJoinExec [a.*] [b.id = a.id, b.id = a.id]
-- Filter算子被消除了
BatchScanExec [a.*] [runtimeFilters = DynamicPruningExpression(
InSubqueryExec(a.id,
SubqueryBroadcastExec(Project [b.id]
Filter [b.id > 0]
Relation [b.id])))]
BroadcastExchangeExec
ProjectExec [b.id]
FilterExec [b.id > 0]
BatchScanExec [b.id]
Pruning Partitions at Runtime
BatchScanExec::compute被调用时,即生成RDD时,才会应用DPP过滤。
/**
* Physical plan node for scanning a batch of data from a data source v2.
*/
case class BatchScanExec(
output: Seq[AttributeReference],
@transient scan: Scan,
runtimeFilters: Seq[Expression],
keyGroupedPartitioning: Option[Seq[Expression]] = None) extends DataSourceV2ScanExecBase {
@transient override lazy val inputPartitions: Seq[InputPartition] = batch.planInputPartitions()
@transient private lazy val filteredPartitions: Seq[Seq[InputPartition]] = {
// 将DPP表达式转换成Spark统一的表达式,即Source Filter
val dataSourceFilters = runtimeFilters.flatMap {
case DynamicPruningExpression(e) => DataSourceStrategy.translateRuntimeFilter(e)
case _ => None
}
if (dataSourceFilters.nonEmpty) {
val originalPartitioning = outputPartitioning
// the cast is safe as runtime filters are only assigned if the scan can be filtered
// 在这里,如果Scan实例,确实支持了runtime filter的功能,那么会在运行时将DynamicPruningExpression下推到数据源
val filterableScan = scan.asInstanceOf[SupportsRuntimeFiltering]
// Scan::filter接口,提供了一个入口,方便用户将Source Filter按自己的需求,再次进行转换,
// 例如Parquet Filter
filterableScan.filter(dataSourceFilters.toArray)
// call toBatch again to get filtered partitions
// 生成最终的`InputPartition`集合,它们经过了dataSourceFilters洗礼。
val newPartitions = scan.toBatch.planInputPartitions()
originalPartitioning match {
case p: KeyGroupedPartitioning =>
if (newPartitions.exists(!_.isInstanceOf[HasPartitionKey])) {
throw new SparkException("Data source must have preserved the original partitioning " +
"during runtime filtering: not all partitions implement HasPartitionKey after " +
"filtering")
}
val newRows = new InternalRowSet(p.expressions.map(_.dataType))
newRows ++= newPartitions.map(_.asInstanceOf[HasPartitionKey].partitionKey())
val oldRows = p.partitionValuesOpt.get
if (oldRows.size != newRows.size) {
throw new SparkException("Data source must have preserved the original partitioning " +
"during runtime filtering: the number of unique partition values obtained " +
s"through HasPartitionKey changed: before ${oldRows.size}, after ${newRows.size}")
}
if (!oldRows.forall(newRows.contains)) {
throw new SparkException("Data source must have preserved the original partitioning " +
"during runtime filtering: the number of unique partition values obtained " +
s"through HasPartitionKey remain the same but do not exactly match")
}
groupPartitions(newPartitions).get.map(_._2)
case _ =>
// no validation is needed as the data source did not report any specific partitioning
newPartitions.map(Seq(_))
}
} else {
partitions
}
}
override lazy val inputRDD: RDD[InternalRow] = {
if (filteredPartitions.isEmpty && outputPartitioning == SinglePartition) {
// return an empty RDD with 1 partition if dynamic filtering removed the only split
sparkContext.parallelize(Array.empty[InternalRow], 1)
} else {
new DataSourceRDD(
sparkContext, filteredPartitions, readerFactory, supportsColumnar, customMetrics)
}
}
override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
inputRDD.map { r =>
numOutputRows += 1
r
}
}
}
扩展知识
DPP的设计实现
类结构
下图展示了Spark中与DPP相关的类定义,其中DynamicPruning
是一个接口,标识了一个Logical Plan
结点是不是DPP相关的。
为了能够完成DPP的功能,Spark实现了两个具体的表达式(Expression)类,DynamicPruningSubquery
和DynamicPruningExpression
。
DynamicPruningSubquery
其中DynamicPruningSubquery
维护了可以进行DPP的过滤条件的细节,如在前一节的SQL示例中提到的JOIN过滤条件a.id IN (SELECT id FROM b WHERE id = 1)
,因此它包含了一个子查询。
case class DynamicPruningSubquery(
pruningKey: Expression, // 被裁剪的JOIN侧的字段,如前面的SQL示例中提到的a.id字段
buildQuery: LogicalPlan, // 被广播的子查询
buildKeys: Seq[Expression], // 被广播的子查询对应的所有JOIN keys,如前面的SQL示例中提到的b.id
broadcastKeyIndex: Int, // 被广播的子查询的输出字段的索引,例如前面的SQL示例中的JOIN条件a.id = b.id,其中a.id对应于pruningKey,b.id对应于broadcastKey
onlyInBroadcast: Boolean, // 用于标识过滤子查询的结果是否只能被Broadcast到JOIN的另一侧(被过滤侧)
exprId: ExprId = NamedExpression.newExprId,
hint: Option[HintInfo] = None)
extends SubqueryExpression(buildQuery, Seq(pruningKey), exprId, Seq.empty, hint)
with DynamicPruning
with Unevaluable
with UnaryLike[Expression]
DynamicPruningExpression
DynamicPruningExpression
则是对DynamicPruningSubquery
的封装和替代,维护的信息逻辑是是子查询的结果集,因此它与DynamicPruningSubquery类有前后关系。
// child成员变量,对应了DynamicPruningSubquery返回的结果集
case class DynamicPruningExpression(child: Expression)
extends UnaryExpression
with DynamicPruning
简单来说,Spark会在planning阶段,先收集可以进行DPP的信息,生成DynamicPruningSubquery
结点;然后对DynamicPruningSubquery
进行分析,按一定的规则可以DPP的逻辑计划。
生成DynamicPruningSubquery
在逻辑计划树中插入DynamicPruningSubquery
结点,是通过PartitionPruning优化规则实现的,它被注册在SparkOptimizer的defaultBatches
中,因此所有的Query都会尝试应用此规则。
object PartitionPruning extends Rule[LogicalPlan] with PredicateHelper with JoinSelectionHelper {
private def prune(plan: LogicalPlan): LogicalPlan = {
plan transformUp {
// skip this rule if there's already a DPP subquery on the LHS of a join
case j @ Join(Filter(_: DynamicPruningSubquery, _), _, _, _, _) => j
case j @ Join(_, Filter(_: DynamicPruningSubquery, _), _, _, _) => j
case j @ Join(left, right, joinType, Some(condition), hint) =>
var newLeft = left
var newRight = right
// extract the left and right keys of the join condition
val (leftKeys, rightKeys) = j match {
case ExtractEquiJoinKeys(_, lkeys, rkeys, _, _, _, _, _) => (lkeys, rkeys)
case _ => (Nil, Nil)
}
// checks if two expressions are on opposite sides of the join
def fromDifferentSides(x: Expression, y: Expression): Boolean = {
def fromLeftRight(x: Expression, y: Expression) =
!x.references.isEmpty && x.references.subsetOf(left.outputSet) &&
!y.references.isEmpty && y.references.subsetOf(right.outputSet)
fromLeftRight(x, y) || fromLeftRight(y, x)
}
splitConjunctivePredicates(condition).foreach {
case EqualTo(a: Expression, b: Expression)
if fromDifferentSides(a, b) =>
val (l, r) = if (a.references.subsetOf(left.outputSet) &&
b.references.subsetOf(right.outputSet)) {
a -> b
} else {
b -> a
}
// there should be a partitioned table and a filter on the dimension table,
// otherwise the pruning will not trigger
var filterableScan = getFilterableTableScan(l, left)
if (filterableScan.isDefined && canPruneLeft(joinType) &&
hasPartitionPruningFilter(right)) {
newLeft = insertPredicate(l, newLeft, r, right, rightKeys, filterableScan.get)
} else {
filterableScan = getFilterableTableScan(r, right)
if (filterableScan.isDefined && canPruneRight(joinType) &&
hasPartitionPruningFilter(left) ) {
newRight = insertPredicate(r, newRight, l, left, leftKeys, filterableScan.get)
}
}
case _ =>
}
Join(newLeft, newRight, joinType, Some(condition), hint)
}
}
override def apply(plan: LogicalPlan): LogicalPlan = plan match {
// Do not rewrite subqueries.
case s: Subquery if s.correlated => plan
case _ if !conf.dynamicPartitionPruningEnabled => plan
case _ => prune(plan)
}
}
Subquery(子查询)的定义及分类
依赖子查询
由于了表b上的子查询,包含了外部查询(这里指表a)的字段/列,因此Spark不会对这一类子查询应用动态裁剪优化规则。
其中a.id是一个类型为OuterReference的属性,因此它已经在外层的Query scope中被解析了;而b.id是一个类型为AttributeReference的属性,故这种有内、外依赖关系的查询,被称之为关联/依赖查询。
SELECT *
FROM a
WHERE EXISTS (SELECT *
FROM b
WHERE b.id > a.id)
非依赖子查询
内查询(表b上的查询)与外查询(表a上的查询)没有关联关系,因此Spark可以修改计划,应用动态裁剪功能优化规则。
SELECT *
FROM a
WHERE EXISTS (SELECT *
FROM b
WHERE b.id > 10)
几类常见的Subquery
Lateral
SELECT * FROM t LATERAL (SELECT * FROM u) uu
Exists
SELECT *
FROM a
WHERE EXISTS (SELECT *
FROM b
WHERE b.id > 10)
IN
SELECT *
FROM a
WHERE a.id IN (SELECT id
FROM b)
Scala
SELECT (SELECT CURRENT_DATE())
Table Valued Function
SELECT * FROM my_tvf(TABLE (v1), TABLE (SELECT 1))