当前位置: 首页 > article >正文

基于yolov8、yolov5的安全帽检测系统(含UI界面、数据集、训练好的模型、Python代码)

在这里插入图片描述

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制直接提供最少两个训练好的模型。模型十分重要,因为有些同学的电脑没有 GPU,无法自行训练。

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

界面:
    PyQt5

以上是本篇博客的简单说明,添加注意力机制可作为模型的创新点

在这里插入图片描述


摘要安全帽检测在工地及工业场景中起着至关重要的作用,不仅能有效保障作业人员的安全,还为自动化监管提供了可靠的数据支撑。本文介绍了一款基于YOLOv8、YOLOv5等深度学习框架的安全帽检测模型,该模型使用了大量图片进行训练,能够准确识别佩戴与未佩戴安全帽的人员。系统可检测多种场景下的安全帽佩戴情况,包括多人场景复杂背景光线变化等。
此外,我们开发了一款带有UI界面安全帽检测系统,支持实时检测人员佩戴安全帽的情况,并通过图形界面直观展示检测结果。系统基于PythonPyQt5开发,能够处理图片、视频及摄像头输入,检测结果可以保存以供后续分析。本文还提供了完整的Python代码及详细的使用指南,供有兴趣的读者参考,完整代码资源请见文章末尾。

前言

    安全帽检测在保障工地作业人员安全、减少安全隐患以及推动智能化安全管理中发挥着至关重要的作用。在工业及建筑施工过程中,快速且精准地识别人员是否佩戴安全帽,能够显著提高安全监管效率,减少事故发生率,尤其是在自动化监控系统中,准确识别未佩戴安全帽的人员是安全管理的基础。同时,安全帽检测系统还为工地管理人员提供了重要的实时数据反馈,帮助他们及时采取预防措施,确保作业环境的安全性。

    安全帽检测已在多个领域得到了广泛应用,如建筑施工、安全管理、工业生产、智能监控等场景中,都依赖于高效准确的安全帽检测技术。通过自动化的检测系统,施工单位可以在作业过程中实时监控人员的安全防护措施,并根据检测到的违规行为做出相应的处理,从而提升安全管理水平,降低事故发生率。

    在现代安全管理环境中,安全帽检测系统还可以与其他智能化管理系统结合使用,如施工现场监控、智能调度和风险预警系统,形成一个完整的智能安全管理体系,帮助企业更高效地管理现场安全。在特殊的施工环境或复杂的作业场景中,系统能够快速识别是否佩戴安全帽的情况,为安全管理人员提供更为精准的监督建议。

    本文通过收集与安全帽佩戴相关的数据和图像,利用YOLOv8、YOLOv5等目标检测技术,结合Python与PyQt5,开发出了一款界面简洁的安全帽检测系统。该系统支持图片、视频及摄像头检测,并能够保存识别结果,为用户提供直观便捷的安全帽检测体验。

目录

  • 项目介绍
  • 前言
  • 功能展示:
  • 🌟 一、环境安装
  • 🌟 二、数据集介绍
  • 🌟 三、深度学习算法介绍
    • 1. yolov8相关介绍
    • 2. yolov5相关介绍
    • 3. PyQt5介绍
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 结束语 🌟 🌟🌟🌟
  • 参考文献:

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

更多的其他功能可以通过下方视频演示查看。

基于深度学习的安全帽检测系统(yolov8)


🌟 一、环境安装

文档中有详细的环境安装指南,包括 Python、PyCharm、CUDA、Torch 等库的安装步骤,所有版本均已适配。你可以根据文档或视频教程一步步完成安装。

经过三年多的经验积累,我整理了在帮助他人安装环境过程中常见的问题和解决方法,并汇总到这份文档中。无论你是使用 GPU 版还是 CPU 版,都能找到相关的安装细节和说明。文档会定期更新,以确保最新的环境配置和优化,供大家参考。

文档截图如下:

在这里插入图片描述


🌟 二、数据集介绍

我们使用的数据集是从网上下载的,其中大多数场景都是实际的工地作业场景。该数据集共有约5000张图像,包含两个类别:helmet(佩戴安全帽)和head(未佩戴安全帽)。这些数据已经转换为YOLO格式,并且已经按照train、valtest的划分进行了准备,因此可以直接拿来使用。

这个数据集采集了各种不同的场景,如建筑工地、工厂车间等,并包含了不同角度、光照条件和人员密集度的图像。这样的多样性使得模型能够在各种真实环境中进行准确的安全帽检测。

为了方便使用,数据集已经进行了标注,并且按照训练集、验证集和测试集的划分进行了组织。您可以直接使用这些数据集进行模型的训练和评估。

下面是一些数据集图片的截图,展示了不同场景下的安全帽和未佩戴安全帽的示例图像,以帮助您更好地了解数据集的内容和质量。

在这里插入图片描述


🌟 三、深度学习算法介绍

本系统集成了多个不同的算法版本和界面版本,以下是对这些版本的概述:

算法版本方面,系统提供了多种深度学习算法和传统图像处理技术,用户可以选择最合适的算法进行任务处理。此外,各算法版本经过严格的测试和优化,以提供更高的准确率和效率。

界面版本方面,系统设计了多种用户界面风格,可以选择简约、直观的界面,快速上手进行操作;也可以选择功能丰富的专业界面,满足复杂任务的需求。界面设计注重用户体验,确保用户在操作过程中能够方便地访问各种功能。

此外,系统还支持实时更新和扩展,可以根随时添加新的算法模块或界面选项。这种灵活性不仅提高了系统的适用性,也为未来的技术发展预留了空间。

总之,本系统通过多个算法和界面版本的组合,提供了丰富的选择和强大的功能。

下面是对包含到的算法的大概介绍:

1. yolov8相关介绍

  YOLOv8 是当前深度学习领域内的一个SOTA(State-Of-The-Art)模型,凭借其前代版本的技术积累,再次引领了目标检测算法的发展方向。与其前辈不同,YOLOv8在模型结构和计算方式上都做了创新性调整,旨在实现更高效的计算和更灵活的应用场景适应能力。全新的骨干网络设计,结合Anchor-Free 检测头,让模型在面对不同输入尺寸、不同目标尺度时的表现更加出色,极大提升了性能和准确性

  此外,YOLOv8 的另一个重要进步在于它采用了全新的损失函数,使得训练过程更加稳定和高效。无论是在传统的CPU平台上运行,还是在更强大的GPU平台上进行加速,YOLOv8 都能够适应不同硬件资源的场景,确保在各种场合下保持高效的推理速度精确的检测能力

  不过,值得注意的是,ultralytics 这一开发团队并没有直接将其开源库命名为 YOLOv8,而是采用了ultralytics的品牌名来命名整个项目。这并非单纯的命名策略,而是反映了其定位的重大变化。ultralytics 将这个库不仅视为一个算法框架,而非仅仅一个 YOLO 版本的延续。其设计目标之一是打造一个能够适应不同任务的算法平台,无论是目标检测、分类、分割,还是姿态估计,都能够在这个框架中被高效地支持。

  这也意味着,未来的ultralytics 开源库将不仅限于 YOLO 系列,它的可扩展性为用户提供了更大的可能性。无论是使用非 YOLO 系列模型,还是面对不同应用领域的特定需求,ultralytics都提供了灵活且高效的解决方案

总的来说,ultralytics 开源库 的优势可以归纳为以下几个要点:

  • 融合当前最前沿的深度学习技术,让用户可以轻松实现复杂的计算任务。

  • 具有极高的扩展性,未来将不仅支持 YOLO 系列,还会支持更多非 YOLO 的算法,适用于广泛的任务场景。

如此一来,ultralytics 不仅能够帮助开发者在算法研究工程应用上取得突破,更能推动未来智能视觉领域的进一步发展。

在这里插入图片描述

网络结构如下:
在这里插入图片描述

2. yolov5相关介绍

  YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。
在这里插入图片描述

  本系统采用了基于深度学习的目标检测算法YOLOv5,该算法是YOLO系列算法的较新版本,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题。此外,YOLOv5还引入了一种称为SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。

  在YOLOv5中,首先将输入图像通过骨干网络进行特征提取,得到一系列特征图。然后,通过对这些特征图进行处理,将其转化为一组检测框和相应的类别概率分数,即每个检测框所属的物体类别以及该物体的置信度。YOLOv5中的特征提取网络使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。

在这里插入图片描述

  在YOLOv5中,每个检测框通过其左上角坐标(x, y)、宽度(w)、高度(h)以及置信度confidence)来表示。此外,YOLOv5对于每个检测框还会预测C个类别的概率得分,每个类别的概率得分总和为1。这意味着每个检测框最终可以被表示为一个维度为(C+5)的向量,包括类别概率、位置和置信度信息。

  在训练过程中,YOLOv5使用了交叉熵损失函数来优化模型,该损失函数由定位损失置信度损失分类损失三个部分组成。YOLOv5还采用了Focal LossIoU Loss等优化方法,以缓解正负样本不平衡目标尺寸变化等问题。这些优化不仅提高了模型的准确性,还改善了在不同尺寸目标下的表现。

  从网络结构来看,YOLOv5分为四个主要部分:Input(输入)、Backbone(骨干网络)、Neck(颈部结构)和Prediction(预测)。其中,Input部分负责将数据引入网络,采用了Mosaic数据增强技术,能够通过随机裁剪和拼接输入图片,进一步提升网络的泛化能力。

  Backbone部分是YOLOv5提取图像特征的关键模块,其特征提取能力直接影响了整个模型的性能表现。相比前代YOLOv4,YOLOv5在Backbone中引入了Focus结构。Focus结构通过切片操作将图片的宽度(W)高度(H)信息转移到通道空间中,从而实现了2倍的下采样操作,同时保证了不丢失关键信息。

3. PyQt5介绍

  PyQt5 是 Python 语言的一个图形用户界面(GUI)开发框架,基于 Qt库 开发而成。Qt 是一个广泛使用的跨平台 C++ 图形库,支持开发适用于 Windows、macOS、Linux 等多个操作系统的应用程序。PyQt5 提供了对 Qt 类库的完整封装,使开发者可以使用 Python 语言构建功能强大、界面美观的桌面应用。

  PyQt5 包含了丰富的组件,如窗口、按钮、文本框、表格等,可以通过拖拽和代码的方式快速布局,极大地简化了 GUI 开发流程。同时,它还支持 事件处理信号与槽机制,使得用户与界面之间的交互更加灵活。

  通过 PyQt5,开发者能够轻松实现跨平台桌面应用,同时结合 Python 的易用性和 Qt 的强大功能,既适合初学者学习 GUI 编程,也适合资深开发者进行复杂项目的开发。


🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,以符合实际情况。如果你打算训练 YOLOv8s 模型,请将其修改为 model_yaml = yaml_yolov8s。如果你想训练添加 SE注意力机制 的模型,请将其修改为 model_yaml = yaml_yolov8_SE

  3. 修改 data_path 的数据集路径。这里默认指定的是 traindata.yaml 文件。如果你使用的是我提供的数据,可以不用修改。

  4. 修改 model.train() 中的参数,根据自己的需求和电脑硬件的情况进行调整。

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集
                imgsz=640,                  # 训练图片大小
                epochs=200,                 # 训练的轮次
                batch=2,                    # 训练batch
                workers=0,                  # 加载数据线程数
                device='0',                 # 使用显卡
                optimizer='SGD',            # 优化器
                project='runs/train',       # 模型保存路径
                name=name,                  # 模型保存命名
                )
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径
              imgsz=300,                # 图片大小,要和训练时一样
              batch=4,                  # batch
              workers=0,                # 加载数据线程数
              conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。
              iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。
              device='0',               # 使用显卡
              project='runs/val',       # 保存路径
              name='exp',               # 保存命名
              )
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述
   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的文档中查看这些指标的具体含义,示例截图如下:

在这里插入图片描述


结束语 🌟 🌟🌟🌟

   下面图片是对每个文件夹作用的介绍:(纯粹是秀一秀 俺的 代码结构是否清晰, 注释是否详细,如果大家觉得有更好的方法,可以下方留言,一定再精进一下。)

在这里插入图片描述

其实用yolo算法做系统非常的简单,但是博客文字有限,如果有介绍不明白的地方,也可以看一下下面的视频,也许会更容易理解。

视频就是记录自己如何进行环境安装、以及如何进行模型训练和模型评估的, 具体视频列表可以看下方图片箭头位置。当然如果自己不做这个项目,做其他的也可以参考一下,毕竟方法都是通用的。
在这里插入图片描述

项目完整文件下载请见演示与介绍视频的视频简介部分进行获取➷➷➷

演示与介绍视频: 【基于深度学习的安全帽检测系统(yolov8)】

演示与介绍视频: 【基于深度学习的安全帽检测系统(yolov5)】

由于博主的能力有限,文中提到的方法虽经过实验验证,但难免存在一些不足之处。为不断提升内容的质量与准确性,欢迎您指出任何错误和疏漏。这不仅将帮助我在下次更新时更加完善和严谨,也能让其他读者受益。您的反馈对我至关重要,能够推动我进一步完善相关内容。

此外,如果您有更优秀的实现方案或独到的见解,也非常欢迎分享。这将为大家提供更多思路与选择,促进我们共同的成长与进步。期待您的宝贵建议与经验交流,非常感谢您的支持!

参考文献:

  1. Hao, W., Zhang, Y., & Chen, H. (2019). “A Deep Learning-Based Approach for Real-Time Safety Helmet Detection.” Journal of Physics: Conference Series, 1345(5), 052002.
    本文提出了一种基于深度学习的实时安全帽检测方法,采用YOLOv3算法对现场工人的安全帽佩戴情况进行检测,并取得了较好的检测效果。

  2. Wang, L., Li, Z., & Zhang, H. (2020). “Helmet Detection Based on Improved YOLOv4 in Complex Environments.” IEEE Access, 8, 111720-111730.
    本研究在YOLOv4模型的基础上进行改进,使其在复杂环境下的安全帽检测精度有所提升,能够适应不同光照和遮挡条件。

  3. Zhou, Y., & He, Y. (2021). “Automatic Helmet Wearing Detection Using Deep Learning Model.” Proceedings of the 2021 International Conference on Artificial Intelligence and Big Data (ICAIBD), 198-202.
    该文提出了一种自动检测安全帽佩戴情况的深度学习模型,结合卷积神经网络(CNN)和SSD算法,实现了在工业现场的高效检测。

  4. Liu, X., & Tang, J. (2018). “Helmet Detection for Construction Safety Using Improved Faster R-CNN.” Applied Sciences, 8(12), 2535.
    本文利用改进版的Faster R-CNN模型进行安全帽检测,重点解决了工地复杂背景下的漏检和误检问题。


http://www.kler.cn/news/353287.html

相关文章:

  • pandas 数据分析实战
  • 算法1—八大常用排序算法(上)
  • WebRTC音频 03 - 实时通信框架
  • 写一个 qq自动回话的程序
  • GEE传奇服务端中自定义颜色文字发送脚本教程
  • 基于Arduino的LED亮灭按键控制
  • QT 10.10
  • 服务器维保|思腾合力以专业力量 筑牢企业IT基石
  • 大数据面试题整理——HDFS
  • C语言笔记 18 —— 指针与数组
  • cmake Qt模板
  • dayjs日期格式化,开发uniapp或unicloud前后端进行时间格式转换
  • Linux——DNS服务器正向解析搭建教程
  • Java使用原生HttpURLConnection实现发送HTTP请求
  • Scala的flatten函数
  • Spring Boot构建高效医疗病历B2B交互平台
  • 1992-2022年全国各省产业集聚水平测算数据(含原始数据+计算过程+结果)(无缺失)
  • 【ROS实操六】launch的使用
  • python yfinance 下载金融数据,股票数据
  • 设计模式02-桥接模式(Java)
  • MySQL数据的导出
  • IJKPlayer源码分析-整体结构
  • 智慧园区管理:构建高效、安全、智能的园区环境
  • 当你不会介绍自己的产品和系统时,不妨看看大厂是如何做的
  • Python 如何处理大规模数据库表的迁移与数据迁移的高效执行
  • 微信小程序使用wx.navigateTo路由跳转层级限制