当前位置: 首页 > article >正文

[算法日常] 逆序对

[算法日常] 逆序对

定义

在一个长度为 n n n 的数组 a a a 中,若存在 ∀ 1 ≤ i , j ≤ n \forall 1\le i,j\le n ∀1i,jn,使得 a i > a j a_i>a_j ai>aj ,则称 < a i , a j > <a_i,a_j> <ai,aj> 为一对逆序对。

举个例子,一个长度为 5 5 5 的数组为:

1 5 3 6 4

则存在 3 3 3 个逆序对,分别是 < 5 , 3 > , < 5 , 4 > , < 6 , 4 > <5,3>,<5,4>,<6,4> <5,3>,<5,4>,<6,4>

解法

F1:

显然,可以枚举 ∀ 1 ≤ i , j ≤ n \forall 1\le i,j\le n ∀1i,jn,若满足 a i > a j a_i>a_j ai>aj,则答案 + 1 +1 +1

#include<bits/stdc++.h>
using namespace std;
#define ljl long long
const ljl N=5e5+5;
ljl n,a[N],ans;
int main(){
    scanf("%lld",&n);
    for(ljl i=1;i<=n;i++)
        scanf("%lld",&a[i]);
   	for(ljl i=1;i<=n;i++)
        for(ljl j=i+1;j<=n;j++)
            if(a[i]>a[j])
                ++ans;
   	printf("%lld\n",ans);
    return 0;
}

现场手打的代码,没有编译过

F2:重点:利用可维护区间的数据结构

首先再次分析题目。

不难想到,可以记录所有比 a i a_i ai 大的数字个数,最后 a i a_i ai​ 对答案的贡献即为比它大的数字个数。

不妨用 b k t i bkt_i bkti 表示 i i i 出现的次数(类似于桶)。

因为是求所有 ≥ a i \ge a_i ai 的值,所以就可以将数组排序,然后统计 i ∼ n i\sim n in 的数字个数和。

那么就扯上了区间问题。

那么网上大多数人都是用树状数组来进行区间维护。而我——用线段树!!!!

万能的线段树,接受我的膜拜!!!!!

话说我咋还没有发表过关于线段树的博客啊……最近学业有点忙,待更新!!!

正题。

还有一个问题,就是关于桶。

如果 a i a_i ai 的范围过大?空间肯定爆炸。

这时候,离散化就出场了。

离散化:

对于有些问题,我们仅需要知道其值与其他数字的关联(比如大小排序),就可以将其下标赋值为排序后的排名(奇怪的修辞)。

利用区间数据结构查询区间和

综上所述,可以想到用 b b b 表示原数组, i d i id_i idi 表示在原数组中第 i i i 小的数,最后统计区间 a i a_i ai 的值即可。

例题

洛谷 P1908 逆序对。

代码实现
#include<bits/stdc++.h>
using namespace std;
#define ljl long long
#define lc p<<1
#define rc p<<1|1
const ljl N=5e5+5;
ljl n,ans,id[N],b[N];
struct SMT{
	ljl l,r,sum;
}e[N<<4];
void build(ljl l,ljl r,ljl p)//线段树建树
{
	e[p].l=l;e[p].r=r;
	if(l==r)
	{
		e[p].sum=0;
		return;
	}
	ljl mid=l+r>>1;
	build(l,mid,lc);
	build(mid+1,r,rc);
	e[p].sum=e[lc].sum+e[rc].sum;
	return;
}
void add(ljl x,ljl val,ljl p)//遇到了离散化后下标为x的数,将其个数+1
{
	if(e[p].l==e[p].r)
	{
		e[p].sum++;
		return;
	}
	ljl mid=e[p].l+e[p].r>>1;
	if(x<=mid)
		add(x,val,lc);
	if(x>mid)
		add(x,val,rc);
	e[p].sum=e[lc].sum+e[rc].sum;
	return;//与线段树正常的单点修改大同小异
}
ljl query(ljl l,ljl r,ljl p)//查询区间
{
	if(l<=e[p].l&&e[p].r<=r)
		return e[p].sum;
	ljl ans=0,mid=e[p].l+e[p].r>>1;
	if(l<=mid)
		ans+=query(l,r,lc);
	if(r>mid)
		ans+=query(l,r,rc);
	return ans;
}
int main(){
	scanf("%lld",&n);
	for(ljl i=1;i<=n;i++)
	{
		scanf("%lld",&b[i]);//原数组
		id[i]=b[i];//开始先赋值为原数组
	}
	sort(b+1,b+n+1);
	unique(b+1,b+n+1);//去重,是离散化的一个重要部分
	for(ljl i=1;i<=n;i++)
	{
		ljl pos=lower_bound(b+1,b+n+1,id[i])-b;
        //lower_bound:查询区间内第一个大于等于它的元素,因为是二分查找,所以时间是log n。
		id[i]=pos;
	}
	build(1,n,1);
	for(ljl i=1;i<=n;i++)
	{
		ans=ans+query(id[i]+1,n,1);//查询id[i]+1 ~ n 的区间
		add(id[i],1,1);
	}
	printf("%lld\n",ans);
	return 0;
}

预祝大家 CSP-J/S 2024 RP++!!!


http://www.kler.cn/a/353864.html

相关文章:

  • LeetCode -Hot100 - 53. 最大子数组和
  • 如何在 Ubuntu 22.04 上安装 Cassandra NoSQL 数据库教程
  • 闲谭SpringBoot--ShardingSphere分库分表探究
  • C 语言奇幻之旅 - 第16篇:C 语言项目实战
  • c#使用SevenZipSharp实现压缩文件和目录
  • MATLAB语言的正则表达式
  • 音乐播放器项目专栏介绍​
  • Linux的kafka安装部署
  • 自动化测试与敏捷开发的重要性
  • docker (desktopcompose) download
  • KVM 建黑群晖
  • HarmonyOS NEXT 应用开发实战(六、组件导航Navigation使用详解)
  • JavaWeb Servlet--09深入:注册系统03--删除用户业务
  • 使用WordPress从零开始搭建一个本地网站实现远程访问
  • [Python]将pdf文件转为svg
  • VMware16的安装及VMware配置Linux虚拟机
  • Windows模拟电脑假死之键盘鼠标无响应
  • 【Java后端】Spring vs SpringBoot
  • Spring Boot比Spring多哪些注解
  • extern与static
  • sd卡挂载返回FR_NOT_READY等错误
  • 我谈Sobel算子与高斯一阶微分的关系
  • 深入解析TensorFlow——从基础到进阶
  • 【C语言】结构体应用:统计成绩最低分
  • Linux MISC 驱动实验
  • Vue检测获取最新资源 解决浏览器缓存问题