当前位置: 首页 > article >正文

金融信用评分卡建模项目:AI辅助

        最近我一直忙着开发一个信用评分卡建模工具,所以没有时间更新示例或动态。今天,我很高兴地跟大家分享,这个工具的基本框架已经完成了,并且探索性的将大语言模型(AI)整合了进去。目前ai在工具中扮演智能助手,完成用户解答功能,帮助用户更好地理解和使用信用评分卡建模信息。整个过程中遇到了不少挑战。

        下面向大家介绍下工具的主要板块和功能,希望得到大家的宝贵指导意见。

        1、数据探索

        主要实现加载源数据和可视化的功能,开发采用的样本数据是开源的德国信用数据集:GermanCredit。

cc1799b1e813462ea434cc860696f92b.png

        项目采用嵌入pygwalker的方式对源数据进行可视化,用户可以自行组合分析数据内容。pygwalker示例如下:

 引用:https://zhuanlan.zhihu.com/p/682465515

d635d496a9fd4788827df0ab9203cd75.gif

        2、特征分析

        对源数据的特征进行分析,主要采用以下算法来实现

  •    箱线图:分析异常样本
  •   卡方检验(Chi-Squared Test):适用于分类任务和离散特征
  •   t-检验(t-test):适用于分类任务和连续特征
  •   方差分析(ANOVA):适用于多类别分类任务和连续特征
  •   Pearson 相关系数:适用于连续特征和标签
  • ......

aca25865aec14a388179a2346d37be6e.png

 

        3、抽样

        对源数据进行抽样,目前采用的是分层抽样方式,根据目标变量,进行分层抽样。

0df88da2757840b2aab46de5e30138e8.png

        4、WOE转换

        金融信用评分卡要求比较稳健及可解释性强,所以woe转换是必不可少步骤。

        ‌‌WOE(Weight of Evidence)转换是一种将分类变量的每个类别映射到一个连续的数值的方法,这个数值反映了该类别相对于参考类别(通常是目标事件发生率最低的类别)对目标事件发生概率的影响强度‌。WOE转换的公式通常是对数变换,其值可以为正、负或零,代表了该特征值对“好客户”和“坏客户”的影响程度。

WOE转换在数据分析和建模中有多种用途和好处:

  • ‌处理异常值‌:WOE转换可以处理数据中的异常值,通过将极端值分组到单独的类别中,避免对模型产生负面影响。
  • ‌处理缺失值‌:缺失值可以单独分组,从而不影响模型的训练。
  • ‌处理分类变量‌:WOE转换帮助处理分类变量,无需虚拟变量,可以直接用于逻辑回归等模型中。
  • ‌提升模型效果‌:通过标准化特征值,WOE转换可以提高模型的预测效果和可解释性。

71b686e175084d01a489dbfddfefb10f.png

        5、模型评估

        模型评估板块前面是模型训练,目前该板块没有提前输出信息,所以没有展示。模型评估主要是常用的一些模型评估指标,目前想到的是:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、ROC-AUC/Gini、F1 Score、KS、以及Lift图、AUC-ROC等。

0cd4b16bc15346f399b3da947a8837ad.png

 

17f13c8c54f546ea82a97281eb79a5cc.png

        6、评分卡生成

        这是评分卡建模最后一步,生成评分卡,及评分的PSI值评估,目前看模型生成的评分卡PSI是接近正太分布,而且PSI=0.0097,这个数值非常好的。

454e86134d834601a529516681356e32.png

 

          7、大语言模型ai助手

        这是此项目唯一的亮点和创新性,将llm融入评分卡建模的过程,目前市场上是不多见的。虽然作用和价值不知能能有多少,但是这是一个让我学习,不断进步的过程。

        急着分享,很多功能还未实现。以下的与与助手聊天的过程。

f990b9d3d0704272b3c52a7123b6d60d.png

907d8942f6ff47f5bf54bd0c8bd0bbcc.jpeg

115d2428f1214f4e84c62a719d2b228f.png

0b77cfc126894fb08bbbcf0c3ded178c.png

 

 

 


http://www.kler.cn/a/354016.html

相关文章:

  • 解决virtualbox克隆ubuntu虚拟机之后IP重复的问题
  • overscroll-behavior-解决H5在ios上过度滚动的默认行为
  • 超大规模分类(一):噪声对比估计(Noise Contrastive Estimation, NCE)
  • [2474].第04节:Activiti官方画流程图方式
  • Python 青铜宝剑十六维,破医疗数智化难关(上)
  • stm32f103zet6 ds18b20
  • mysql指令笔记(基本)
  • C#/WinForm 自定义控件绘制章鱼
  • 【2022工业3D异常检测文献】Patch+FPFH: 结合3D手工点云描述符和颜色特征的异常检测方法
  • xlsx xlsx-style-vite 实现前端根据element 表格导出excel且定制化样式 背景 列宽等
  • 【网络安全】-vulnhub靶场-noob
  • 顺序表的查找
  • 如何将闲置平板变为电脑显示器?GameViewer远程助你低成本实现0门槛副屏串流!
  • 基于Redis实现的延迟队列
  • MATLAB基础应用精讲-【数模应用】HLM模型
  • 20240803 芯动科技 笔试
  • 10秒钟用Midjourney画出国风味的变形金刚
  • 重塑输电线路运维管理,巡检管理系统守护电网稳定运行
  • JAVA地狱级笑话
  • linuxC读取bin文件
  • 大数据面试题整理——MapReduce
  • 传染病防控宣传系统的设计与实现小程序springboot+论文源码调试讲解
  • Java | Leetcode Java题解之第482题秘钥格式化
  • react-JSX
  • 《沈阳工业大学学报》
  • Spring Boot动态数据源切换功能详解