排序算法上——插入,希尔,选择,堆排序
前言:
常见排序方法如下:
本篇将介绍4种排序方法,分别为插入排序,希尔排序,选择排序,堆排序,并分别举例与讲解。
一. 插入排序
1.1 含义与动图分析
插入排序的思想是在有序区间的下一个位置插入一个新的元素,之后将该新区间重新排序,依次类推逐个完成整个区间的排序。
扑克整理手牌时就运用了这一思想。
动态理解:
1.2 问题分析
问题:
有序数组插入新元素并排序较为简单,关键在于我们要排序的数组常常区间为无序,那么如何使要插入元素之前的区间有序呢?
分析:
1.假定有序区间为[0,end],那么需要在[end+1]处插入新元素。
2.因此end的最大值应该小于n-1,否则end+1会导致数组访问越界
3.由于最初的数组为乱序,因此我们可以通过逐次增加有序区间的方式进行插入排序。
1.3 测试实现
代码示例如下:
void InsertSort(int* arr, int n)
{
//n-2
for (int i = 0; i < n - 1; i++)
{
int end = i;
int tmp = arr[end + 1];
while (end >= 0)
{
if (arr[end] > tmp)
{
arr[end + 1] = arr[end];
end--;
}
else {
break;
}
}
arr[end + 1] = tmp;
}
}
时间复杂度分析:
最坏情况:数组降序排列
当我们对下标为i(0<i<n)的tmp数据进行插入时,会将其与前面i个数据比较i次,总比较次数即1+2+3+……(n-1),为O(n2)
最好情况:数组升序排列
当我们对下标为i(0<i<n)的tmp数据进行插入时,只会与其前面一个数据比较一次,即总共(n-1)此,为O(n)
空间复杂度:O(1)
二. 希尔排序
在直接插入排序中我们发现,元素越无序,直接插入排序算法时间效率越低(因为比较次数越多)。特别是当数组为降序,我们要排升序,此时数组的相对无序程度达到了最大,时间复杂度也到了最大。
2.1 含义与图片分析
希尔排序,也称为递减增量排序算法,是插入排序的一种高效率的改进版本。它通过将待排序的序列分割成若干子序列,分别进行直接插入排序,从而达到整个序列有序的目的。希尔排序的核心在于间隔序列的选择,间隔序列通常是按某种规则递减至1的。
2.2 思路及相关结论
思路分析:
1.希尔排序的核心在于对数组进行预排序,值得注意的是,预排序只是让数组相对有序,而非达到真正的有序状态。
2.预排序的处理可以通过分组实现,假设数组元素个数为n,那么我们可以分为gap组,每组元素就要n/gap个(假设可以gap可以被n整除)
3. 其排序思路与插入排序基本相同,但是gap在每次排序之后,需要令gap逐次减小,当gap减小为1时,就相当于插入排序。
2.3 测试实现
//希尔排序时间复杂度:O(n^1.3)
void ShellSort(int* arr, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;//保证最后一次gap一定为1
for (int i = 0; i < n - gap; i++)
{
int end = i;//n-gap-1
int tmp = arr[end + gap];
while (end >= 0)
{
if (arr[end] > tmp)
{
arr[end + gap] = arr[end];
end -= gap;
}
else {
break;
}
}
arr[end + gap] = tmp;
}
}
}
时间复杂度分析:
外层循环:gap每次除以2或3,O(log2n) 或者O(log3n) ,即O(logn)
内层循环:
假设⼀共有n个数据,合计gap组,则每组为n/gap(大致)个;在每组中,插⼊移动的次数最坏的情况下为 S=1 + 2 + 3 + ……+ (n/gap-1),⼀共是gap组,因此:
总计最坏情况下移动总数为:gap ∗ S
gap取值有(以除3为例):n/3 n/9 n/27 … 2 1
一一带入
- 当gap为n/3时,移动总数为: n
- 当gap为n/9时,移动总数为: 4n
- 最后⼀趟,数组已经已基本有序了,gap=1即直接插⼊排序,移动次数就是n
- 通过以上的分析,可以画出这样的曲线图:
因此,希尔排序在最初和最后的排序的次数都为n,即前⼀阶段排序次数是逐渐上升的状态,当到达某⼀顶点时,排序次数逐渐下降⾄n,⽽该顶点的计算暂时⽆法给出具体的计算过程
- 内外循环综合来看,外层循环总共log3n次,内层循环的每次排序次数暂时无法精确计算,所以其复杂度不好计算。
希尔排序时间复杂度不好计算,因为 gap 的取值很多,导致很难去计算,因此很多书中给出的希尔排序的时间复杂度都不固定。《数据结构(C语⾔版)》—严蔚敏书中给出的时间复杂度为:
-
总之希尔排序的时间复杂度综合来说是高于直接插入排序的,范围大概是O(n1.3)~O(n2)
-
总结:
- 希尔排序的时间性能优于直接插入排序的原因:
在希尔排序开始时增量较大,分组较多,每组的记录数目少,n小,此时直接插入最好和最坏时间复杂度n2差距很小,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
gap越大,分组越快,相对有序性越差
gap越小,分组越慢,相对有序性越好。
当gap=1时,相当于插入排序。
三. 选择排序
3.1 含义与动图分析
思路:在整个数组内,每次选出最大的值和最小的值分别位于末尾和开头(升序情况,若为降序则与之相反),之后逐次缩小遍历选择空间。
动图图解:
3.2 测试实现
void SelectSort(int* arr, int n)
{
int begin = 0;
int end = n - 1;
while (begin < end)
{
int mini = begin, maxi = begin;
for (int i = begin+ 1; i <= end; i++)
{
if (arr[i] > arr[maxi])
{
maxi = i;
}
if (arr[i] < arr[mini])
{
mini = i;
}
}
//mini begin
//maxi end
Swap(&arr[mini], &arr[begin]);
Swap(&arr[maxi], &arr[end]);
++begin;
--end;
}
}
注意:上述代码存在问题!!!
在定义maxi和mini时,我们都初始化为了begin处,但当begin处的数据即为最大值时,排序就存在了问题。
分析:
mini正常完成交换之后,begin处的最大值也被交换了过去,那么此时end处的交换就会失败,并不能完成正常功能,因为maxi始终位于begin处,而此时begin处的值已经变为了最小值。
改进如下:
//避免maxi begini都在同一个位置,begin和mini交换之后,maxi数据变成了最小的数据
if (maxi == begin)
{
maxi = mini;
}
此时就可以解决最大值位于begin处的情况。
完整代码如下:
void Swap(int* x, int* y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}
void SelectSort(int* arr, int n)
{
int begin = 0;
int end = n - 1;
while (begin < end)
{
int mini = begin, maxi = begin;
for (int i = begin + 1; i <= end; i++)
{
if (arr[i] > arr[maxi])
{
maxi = i;
}
if (arr[i] < arr[mini])
{
mini = i;
}
}
//mini begin
//maxi end
//避免maxi begini都在同一个位置,begin和mini交换之后,maxi数据变成了最小的数据
if (maxi == begin)
{
maxi = mini;
}
Swap(&arr[mini], &arr[begin]);
Swap(&arr[maxi], &arr[end]);
++begin;
--end;
}
}
四. 堆排序
4.1 基本思路分析
由于堆具有相对有序的特性,要么为大堆,要么为小堆,其相当于完成了希尔排序的预排序工作,因此可以利用建堆之后再向上或向下调整来进行排序。
4.2 测试实现
排升序,建大堆
分析:
1.此时我们常常有一个误区,认为小堆与升序类似,应该建立小堆。
2. 然而在排序的时候,时间消耗过于庞大,因为在挪动元素时,会把堆内的序列和关系打乱,因此应该建大堆,然后利用算法进行调整。
代码示例如下:
void AdjustDown(int* a, int n, int parent)
{
// 先假设左孩子小
int child = parent * 2 + 1;
while (child < n) // child >= n说明孩子不存在,调整到叶子了
{
// 找出小的那个孩子
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
// 向下调整建堆 O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
// O(N*logN)
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
--end;
}
}
排降序,建小堆
思路于此相同,在此不做过多阐述。
代码示例如下:
void AdjustDown(int* a, int n, int parent)
{
// 先假设左孩子小
int child = parent * 2 + 1;
while (child < n) // child >= n说明孩子不存在,调整到叶子了
{
// 找出小的那个孩子
if (child + 1 < n && a[child + 1] < a[child])
{
++child;
}
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
// 向下调整建堆 O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
// O(N*logN)
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
--end;
}
}
小结:本文主要讲解了四种排序方法,下篇将会继续讲解排序的其他方式,欢迎各位大佬前来斧正支持!!!