当前位置: 首页 > article >正文

【高等数学】无穷级数

0. 了解

无穷级数是指将无穷多个数按照一定的规律相加起来的表达式。
打个比方,就像你有一个无穷长的梯子,每一级梯子代表一个数。把这些数一个一个加起来,就形成了无穷级数。
比如常见的等比级数$\sum_{n=0}^{\infty}ar^n$,这里a是首项,r是公比。如果$|r|<1$,这个等比级数是收敛的,也就是它的和是一个有限的数。
无穷级数的研究主要是看它是否收敛,也就是这个无穷多个数加起来会不会趋向于一个确定的值。如果收敛,就可以求出这个和;如果不收敛,就说它是发散的。
比如级数$\sum_{n=1}^{\infty}\frac1n$就是发散的,而级数$\sum_{n=0}^{\infty}\frac1{2^n}$是收敛的,它的和为$\frac1{1-\frac12}=2$

无穷级数在许多数学和工程领域中有广泛的应用,包括:泰勒级数,用于近似函数值;傅里叶级数: 用于信号处理和图像分析;概率论: 在计算期望值和方差时经常出现。


幂级数的x是可以变化的,x在收敛域内那么这个级数就是收敛的;x在收敛域外那么这个级数就是发散的。当x在收敛域内时,该幂级数可以求和函数(级数和随x变化而变化的情况)。

常数项级数就是x为某一个值的情况,敛散性是确定的。当他收敛时,和为一个确定值而非函数。

1. 常数项级数

定义

常数项级数就是无穷多个项求和,其中每一项都是常数。

公式

$\sum_{n=1}^{\infty}u_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$

1.1. 敛散性

1.1.1. 概念

敛散性

收敛 发散
$\sum_{n=1}^{\infty}(\frac{1}{2})^{n}=\frac{1}{2}+(\frac{1}{2})^{2}+\ldots+(\frac{1}{2})^{n}+\ldots$ $\sum_{n=1}^{\infty}2^{n}=2+2^{2}+\ldots+2^{n}+\ldots $

通过定义判断级数是否收敛

1. $\lim_{n\to\infty} S_n$极限存在,级数收敛

2.$\lim_{n\to\infty} S_n$极限不存在,级数发散 

1.1.2. 正项级数

 等比级数

例题1 判断级数$\sum_{n=1}^\infty(\frac12)^n=\frac12+(\frac12)^2+\ldots+(\frac12)^n+\ldots$的敛散性。

01/步骤:找到一般项u_{n}=\left ( \frac{1}{2} \right )^{n}

02/步骤:计算$S_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$

$S_n=\frac12+(\frac12)^2+\ldots+(\frac12)^n$

等比数列求和公式 $S_n= a+ aq+ aq^2+ \ldots + aq^n= \frac {a( 1- q^n) }{1- q}=\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}\\=1-(\frac12)^n$

03/步骤:计算$\lim_{n\to\infty}S_{n}$

$\lim_{n\to\infty}S_{n}=\lim_{n\to\infty}[1-(\frac{1}{2})^{n}]\\$

$\lim_{n\to\infty}(\frac{1}{2})^{n}=\lim_{n\to\infty}\frac{1}{2^{n}}=0$

$\lim_{n\to\infty}S_{n}=\lim_{n\to\infty}(1-0)=1\\$

级数$\sum_{n=1}^\infty(\frac12)^n$收敛

例题2 判断级数$\sum_{n=1}^\infty2^n=2+(2)^2+\ldots+(2)^n+\ldots$的敛散性。

01/步骤:找到一般项u_{n}=\left ( 2 \right )^{n}

02/步骤:计算$S_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$

$S_n=2+(2)^2+\ldots+(2)^n$

等比数列求和公式 $S_n= a+ aq+ aq^2+ \ldots + aq^n= \frac {a( 1- q^n) }{1- q}=\frac{2[1-(2)^{n}]}{1-2}\\=2^{n+1}-2$

03/步骤:计算$\lim_{n\to\infty}S_{n}$

$\lim_{n\to\infty}S_{n}=\lim_{n\to\infty}[2^{n+1}-2]=\infty\\$

级数$\sum_{n=1}^\infty(2)^n$发散

p级数 

例题3 判断级数$\sum_{n=1}^{\infty}ln(1+\frac1{n^2})$的敛散性。

$u_n=ln(1+\frac1{n^2})$

$u_n=ln(1+\frac1{n^2})\sim\frac1{n^2}$

p-级数$\sum_{n=1}^{\infty}\frac1{n^2}$收敛

因此级数$\sum_{n=1}^\infty ln(1+\frac1{n^2})$收敛

例题4 判断级数$\sum_{n=1}^\infty2^nsin\frac1{3^n}$的敛散性。

$\sum_{n=1}^{\infty}2^{n}sin\frac{1}{3^{n}}$     $u_{n}=2^{n}sin\frac{1}{3^{n}}$

n\to\infty$\frac{1}{3^{n}}\to0, sin\frac{1}{3^{n}}\sim\frac{1}{3^{n}},u_{n}=2^{n}sin\frac{1}{3^{n}}\sim2^{n}\frac{1}{3^{n}}=(\frac{2}{3})^{n}$

等比级数$\sum_{n=1}^{\infty} (\frac{2}{3})^{n} $收敛,因此$\sum_{n=1}^{\infty}2^{n}sin\frac{1}{3^{n}}$收敛

含有a_n,n!

例题5 判断级数$\sum_{n=1}^\infty\frac{2^nn!}{n^n}$的敛散性。

01/步骤:写出u_nu_{n+1}

$u_n=\frac{2^nn!}{n^n}\quad u_{n+1}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}$

02/步骤:求比值$\frac{u_{n+1}}{u_n}$

$\frac{u_{n+1}}{u_n}=\frac{\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{2^nn!}{n^n}}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^n}{2^nn!}=\frac{2^n\cdot2(n+1)n!}{(n+1)^n(n+1)}\cdot\frac{n^n}{2^nn!}=\frac{2n^n}{(n+1)^n}$

03/步骤:算极限$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho $

$\lim_{n\to\infty}\frac{u_{n+1}}{u_{n}}=\lim_{n\to\infty}\frac{2n^{n}}{(n+1)^{n}}=\lim_{n\to\infty}\frac{2}{(1+\frac{1}{n})^{n}}=\frac{2}{e}<1$

04/步骤:判断敛散性

因此原级数$\sum_{n=1}^\infty\frac{2^nn!}{n^n}$收敛。

例题6 判断级数$\sum_{n=1}^{\infty}\frac{n!}{10^n}$的敛散性。

$u_n=\frac{n!}{10^n}\quad u_{n+1}=\frac{(n+1)!}{10^{n+1}}$


http://www.kler.cn/news/358256.html

相关文章:

  • Win11 安装 PostgreSQL 报错解决方案
  • 【小洛的VLOG】Web 服务器高并发压力测试(Reactor模型测试)
  • 【环境搭建】Windows系统中使用VScode在虚拟机ubuntu系统中进行开发的方法
  • C++ 算法学习——1.9 Kruskal算法
  • 平安养老险深圳分公司:创新养老服务,深入践行金融为民
  • SQLite数据库在Android中的应用及操作方式
  • Python | Leetcode Python题解之第486题预测赢家
  • leetcode day1
  • Python Django 查询集的延迟加载特性
  • BERT论文关键点解读与常见疑问
  • 无人机之自主飞行关键技术篇
  • 苍穹外卖学习笔记(二十五)
  • Vue前置基础
  • 2024软件测试面试800题(答案+文档)
  • list(1)
  • 设计模式一--单例设计模式
  • WebStorm小白下载安装教程
  • Flink窗口分配器WindowAssigner
  • centOS实用命令
  • 一图秒懂色彩空间和色彩模型