当前位置: 首页 > article >正文

(multi)map和set--C++

文章目录

  • 一、序列式容器和关联式容器
  • 二、set系列的使用
    • 1、set和multiset参考文档
    • 2、set类的介绍
    • 3、set的构造和迭代器
    • 4、set的增删查
    • 5、insert和迭代器遍历使用样例:
    • 6、find和erase使用样例:
    • 7、multiset和set的差异
  • 三、map系列的使用
    • 1、map和multimap参考文档
    • 2、map类的介绍
    • 3、pair类型介绍
    • 4、map的构造
    • 5、map的增删查
    • 6、map的数据修改
    • 7、构造遍历及增删查使用样例
    • 8、map的迭代器和[]功能样例
    • 9、multimap和map的差异

一、序列式容器和关联式容器

前面我们已经接触过STL中的部分容器如:string、vector、list、deque、array、forward_list等,这些容器统称为序列式容器,因为逻辑结构为线性序列的数据结构,两个位置存储的值之间一般没有紧密的关联关系,比如交换一下,他依旧是序列式容器。顺序容器中的元素是按他们在容器中的存储位置来顺序保存和访问的。

关联式容器也是用来存储数据的,与序列式容器不同的是,关联式容器逻辑结构通常是非线性结构,两个位置有紧密的关联关系,交换一下,他的存储结构就被破坏了。顺序容器中的元素是按关键字来保存和访问的。关联式容器有map/set系列和unordered_map/unordered_set系列。

本章讲解的map和set底层是红黑树,红黑树是一颗平衡二叉搜索树。set是key搜索场景的结构, map是key/value搜索场景的结构。

二、set系列的使用

1、set和multiset参考文档

https://legacy.cplusplus.com/reference/set/

2、set类的介绍

  1. set的声明如下,T就是set底层关键字的类型
  2. set默认要求T支持小于比较,如果不支持或者想按自己的需求走可以自行实现仿函数传给第二个模版参数
  3. set底层存储数据的内存是从空间配置器申请的,如果需要可以自己实现内存池,传给第三个参数。
  4. 一般情况下,我们都不需要传后两个模版参数。
  5. set底层是用红黑树实现,增删查效率是 O(logN),迭代器遍历是走的搜索树的中序,所以是有序的。
  6. 前面部分我们已经学习了vector/list等容器的使用,STL容器接口设计,高度相似,所以这里我们就不需要一个一个的介绍,而是直接看文档,挑比较重要的接口进行介绍。
template < class T, 			// set::key_type/value_type
	class Compare = less<T>, 	// set::key_compare/value_compare
	class Alloc = allocator<T> 	// set::allocator_type
	> class set;

3、set的构造和迭代器

set的构造我们关注以下几个接口即可。

set的支持正向和反向迭代遍历,遍历默认按升序顺序,因为底层是二叉搜索树,迭代器遍历走的中序;支持迭代器就意味着支持范围for,set的iterator和const_iterator都不支持迭代器修改数据,修改关键字数据,破坏了底层搜索树的结构。

// empty (1) ⽆参默认构造
explicit set (const key_compare& comp = key_compare(),
			  const allocator_type& alloc = allocator_type());
			  
// range (2) 迭代器区间构造
template <class InputIterator>
	set (InputIterator first, InputIterator last,
		const key_compare& comp = key_compare(),
		const allocator_type& = allocator_type());

// copy (3) 拷⻉构造
set (const set& x);

// initializer list (5) initializer 列表构造
set (initializer_list<value_type> il,
	const key_compare& comp = key_compare(),
	const allocator_type& alloc = allocator_type());
	
// 迭代器是⼀个双向迭代器
iterator -> a bidirectional iterator to const value_type

// 正向迭代器
iterator begin();
iterator end();

// 反向迭代器
reverse_iterator rbegin();
reverse_iterator rend();

4、set的增删查

关注以下几个接口即可:

Member types
key_type -> The first template parameter (T)
value_type -> The first template parameter (T)
// 单个数据插⼊,如果已经存在则插⼊失败
pair<iterator,bool> insert (const value_type& val);
// 列表插⼊,已经在容器中存在的值不会插⼊
void insert (initializer_list<value_type> il);
// 迭代器区间插⼊,已经在容器中存在的值不会插⼊
template <class InputIterator>
void insert (InputIterator first, InputIterator last);

// 查找val,返回val所在的迭代器,没有找到返回end()
iterator find (const value_type& val);
// 查找val,返回Val的个数
size_type count (const value_type& val) const;

// 删除⼀个迭代器位置的值
iterator erase (const_iterator position);
// 删除val,val不存在返回0,存在返回1
size_type erase (const value_type& val);
// 删除⼀段迭代器区间的值
iterator erase (const_iterator first, const_iterator last);

// 返回⼤于等val位置的迭代器
iterator lower_bound (const value_type& val) const;
// 返回⼤于val位置的迭代器
iterator upper_bound (const value_type& val) const;

5、insert和迭代器遍历使用样例:

#include<iostream>
#include<set>
using namespace std;
int main()
{
	// 去重+升序排序
	set<int> s;
	// 去重+降序排序(给⼀个⼤于的仿函数)
	//set<int, greater<int>> s;
	s.insert(5);
	s.insert(2);
	s.insert(7);
	s.insert(5);
	
	//set<int>::iterator it = s.begin();
	auto it = s.begin();
	while (it != s.end())
	{
		// error C3892: “it”: 不能给常量赋值
		// *it = 1;
		cout << *it << " ";
		++it;
	} 
	cout << endl;
	
	// 插⼊⼀段initializer_list列表值,已经存在的值插⼊失败
	s.insert({ 2,8,3,9 });
	for (auto e : s)
	{
		cout << e << " ";
	} 
	cout << endl;
	set<string> strset = { "sort", "insert", "add" };
	// 遍历string⽐较ascll码⼤⼩顺序遍历的
	for (auto& e : strset)
	{
		cout << e << " ";
	} 
	cout << endl;
	return 0;
}

6、find和erase使用样例:

#include<iostream>
#include<set>
using namespace std;
int main()
{
	set<int> s = { 4,2,7,2,8,5,9 };
	for (auto e : s)
	{
		cout << e << " ";
	} 
	cout << endl;
	
	// 删除最⼩值
	s.erase(s.begin());
	for (auto e : s)
	{
		cout << e << " ";
	}
	cout << endl;
	
	// 直接删除x
	int x;
	cin >> x;
	int num = s.erase(x);
	if (num == 0)
	{
		cout << x << "不存在!" << endl;
	} 
	for (auto e : s)
	{
		cout << e << " ";
	} 
	cout << endl;
	
	// 直接查找在利⽤迭代器删除x
	cin >> x;
	auto pos = s.find(x);
	if (pos != s.end())
	{
		s.erase(pos);
	} 
	else
	{
		cout << x << "不存在!" << endl;
	} 
	for (auto e : s)
	{
		cout << e << " ";
	} 
	cout << endl;
	
	// 算法库的查找 O(N)
	auto pos1 = find(s.begin(), s.end(), x);
	// set⾃⾝实现的查找 O(logN)
	auto pos2 = s.find(x);
	
	// 利⽤count间接实现快速查找
	cin >> x;
	if (s.count(x))
	{
		cout << x << "在!" << endl;
	} 
	else
	{
		cout << x << "不存在!" << endl;
	} 
	return 0;
}
#include<iostream>
#include<set>
using namespace std;
int main()
{
	std::set<int> myset;
	for (int i = 1; i < 10; i++)
		myset.insert(i * 10); // 10 20 30 40 50 60 70 80 90
	for (auto e : myset)
	{
		cout << e << " ";
	} 
	cout << endl;
	
	// 实现查找到的[itlow,itup)包含[30, 60]区间
	
	// 返回 >= 30
	auto itlow = myset.lower_bound(30);
	// 返回 > 60
	auto itup = myset.upper_bound(60);
	
	// 删除这段区间的值
	myset.erase(itlow, itup);
	
	for (auto e : myset)
	{
		cout << e << " ";
	} 
	cout << endl;
	return 0;
}

7、multiset和set的差异

multiset和set的使用基本完全类似,主要区别点在于multiset支持值冗余,那么insert/find/count/erase都围绕着支持值冗余有所差异,具体参看下面的样例代码理解。

#include<iostream>
#include<set>
using namespace std;
int main()
{
	// 相⽐set不同的是,multiset是排序,但是不去重
	multiset<int> s = { 4,2,7,2,4,8,4,5,4,9 };
	auto it = s.begin();
	while (it != s.end())
	{
		cout << *it << " ";
		++it;
	} 
	cout << endl;
	
	// 相⽐set不同的是,x可能会存在多个,find查找中序的第⼀个
	int x;
	cin >> x;
	auto pos = s.find(x);
	while (pos != s.end() && *pos == x)
	{
		cout << *pos << " ";
		++pos;
	} 
	cout << endl;
	
	// 相⽐set不同的是,count会返回x的实际个数
	cout << s.count(x) << endl;
	
	// 相⽐set不同的是,erase给值时会删除所有的x
	s.erase(x);
	for (auto e : s)
	{
		cout << e << " ";
	} 
	cout << endl;
	return 0;
}

三、map系列的使用

1、map和multimap参考文档

https://legacy.cplusplus.com/reference/map/

2、map类的介绍

map的声明如下,Key就是map底层关键字的类型,T是map底层value的类型,
set默认要求Key支持小于比较,如果不支持或者需要的话可以自行实现仿函数传给第二个模版参数,map底层存储数据的内存是从空间配置器申请的。一般情况下,我们都不需要传后两个模版参数。
map底层是用红黑树实现,增删查改效率是 O(logN) ,迭代器遍历是走的中序,所以是按key有序顺序遍历的。

template < class Key, 				// map::key_type
			class T, 				// map::mapped_type
			class Compare = less<Key>, // map::key_compare
			class Alloc = allocator<pair<const Key,T> > //
map::allocator_type
			> class map;

3、pair类型介绍

map底层的红黑树节点中的数据,使用pair<Key, T>存储键值对数据。

typedef pair<const Key, T> value_type;
template <class T1, class T2>
struct pair
{
	typedef T1 first_type;
	typedef T2 second_type;
	T1 first;
	T2 second;
	
	pair()
	: first(T1())
	, second(T2())
	{}
	
	pair(const T1& a, const T2& b)
	: first(a)
	, second(b)
	{}
	
	template<class U, class V>
	pair (const pair<U,V>& pr)
	: first(pr.first)
	, second(pr.second)
	{}
};

template <class T1,class T2>
inline pair<T1,T2> make_pair (T1 x, T2 y)
{
	return ( pair<T1,T2>(x,y) );
}

4、map的构造

map的构造我们关注以下几个接口即可。

map的支持正向和反向迭代遍历,遍历默认按key的升序顺序,因为底层是二叉搜索树,迭代器遍历走的中序;支持迭代器就意味着支持范围for,map支持修改value数据,不支持修改key数据,修改关键字数据,破坏了底层搜索树的结构。

// empty (1) ⽆参默认构造
explicit map (const key_compare& comp = key_compare(),
			  const allocator_type& alloc = allocator_type());
			  
// range (2) 迭代器区间构造
template <class InputIterator>
	map (InputIterator first, InputIterator last,
		const key_compare& comp = key_compare(),
		const allocator_type& = allocator_type());

// copy (3) 拷⻉构造
map (const map& x);

// initializer list (5) initializer 列表构造
map (initializer_list<value_type> il,
	const key_compare& comp = key_compare(),
	const allocator_type& alloc = allocator_type());

// 迭代器是⼀个双向迭代器
iterator -> a bidirectional iterator to const value_type

// 正向迭代器
iterator begin();
iterator end();
// 反向迭代器
reverse_iterator rbegin();
reverse_iterator rend();

5、map的增删查

map的增删查关注以下几个接口即可:

map增接口,插⼊的pair键值对数据,跟set所有不同,但是查和删的接口只用关键字key跟set是完全类似的,不过find返回iterator,不仅仅可以确认key在不在,还找到key映射的value,同时通过迭代还可以修改value。

Member types
key_type -> The first template parameter (Key)
mapped_type -> The second template parameter (T)
value_type -> pair<const key_type,mapped_type>

// 单个数据插⼊,如果已经key存在则插⼊失败,key存在相等value不相等也会插⼊失败
pair<iterator,bool> insert (const value_type& val);
// 列表插⼊,已经在容器中存在的值不会插⼊
void insert (initializer_list<value_type> il);
// 迭代器区间插⼊,已经在容器中存在的值不会插⼊
template <class InputIterator>
void insert (InputIterator first, InputIterator last);

// 查找k,返回k所在的迭代器,没有找到返回end()
iterator find (const key_type& k);
// 查找k,返回k的个数
size_type count (const key_type& k) const;

// 删除⼀个迭代器位置的值
iterator erase (const_iterator position);
// 删除k,k存在返回0,存在返回1
size_type erase (const key_type& k);
// 删除⼀段迭代器区间的值
iterator erase (const_iterator first, const_iterator last);

// 返回⼤于等k位置的迭代器
iterator lower_bound (const key_type& k);
// 返回⼤于k位置的迭代器
const_iterator lower_bound (const key_type& k) const;

6、map的数据修改

前面我提到map支持修改mapped_type 数据,不支持修改key数据,修改关键字数据,破坏了底层搜索树的结构。

map第一个支持修改的方式时通过迭代器,迭代器遍历时或者find返回key所在的iterator修改,map还有一个非常重要的修改接口operator[],但是operator[]不仅仅支持修改,还支持插入数据和查找数据,所以他是一个多功能复合接口。

需要注意从内部实现角度,map这里把我们传统说的value值,给的是T类型,typedef为mapped_type。而value_type是红黑树结点中存储的pair键值对值。日常使用我们还是习惯将这里的T映射值叫做value。

Member types
key_type -> The first template parameter (Key)
mapped_type -> The second template parameter (T)
value_type -> pair<const key_type,mapped_type>

// 查找k,返回k所在的迭代器,没有找到返回end(),如果找到了通过iterator可以修改key对应的mapped_type值
iterator find (const key_type& k);

// ⽂档中对insert返回值的说明
// The single element versions (1) return a pair, with its member pair::first set to an iterator pointing to either the newly inserted element or to the element with an equivalent key in the map. The pair::second element in the pair is set to true if a new element was inserted or false if an equivalent key already existed.

// insert插⼊⼀个pair<key, T>对象
// 1、如果key已经在map中,插⼊失败,则返回⼀个pair<iterator,bool>对象,返回pair对象 first是key所在结点的迭代器,second是false
// 2、如果key不在在map中,插⼊成功,则返回⼀个pair<iterator,bool>对象,返回pair对象 first是新插⼊key所在结点的迭代器,second是true
// 也就是说⽆论插⼊成功还是失败,返回pair<iterator,bool>对象的first都会指向key所在的迭代器
// 那么也就意味着insert插⼊失败时充当了查找的功能,正是因为这⼀点,insert可以⽤来实现operator[]
// 需要注意的是这⾥有两个pair,不要混淆了,⼀个是map底层红⿊树节点中存的pair<key, T>,另⼀个是insert返回值pair<iterator,bool>
pair<iterator,bool> insert (const value_type& val);

mapped_type& operator[] (const key_type& k);

// operator的内部实现
mapped_type& operator[] (const key_type& k)
{
	// 1、如果k不在map中,insert会插⼊k和mapped_type默认值,同时[]返回结点中存储mapped_type值的引⽤,那么我们可以通过引⽤修改返映射值。所以[]具备了插⼊+修改功能
	// 2、如果k在map中,insert会插⼊失败,但是insert返回pair对象的first是指向key结点的迭代器,返回值同时[]返回结点中存储mapped_type值的引⽤,所以[]具备了查找+修改的功能
	pair<iterator, bool> ret = insert({ k, mapped_type() });
	iterator it = ret.first;
	return it->second;
}

7、构造遍历及增删查使用样例

#include<iostream>
#include<map>
using namespace std;
int main()
{
	// initializer_list构造及迭代遍历
	map<string, string> dict = { {"left", "左边"}, {"right", "右边"},
	{"insert", "插⼊"},{ "string", "字符串" } };
	
	//map<string, string>::iterator it = dict.begin();
	auto it = dict.begin();
	while (it != dict.end())
	{
		//cout << (*it).first <<":"<<(*it).second << endl;
		// map的迭代基本都使⽤operator->,这⾥省略了⼀个->
		// 第⼀个->是迭代器运算符重载,返回pair*,第⼆个箭头是结构指针解引⽤取pair数据
		//cout << it.operator->()->first << ":" << it.operator->()->second << endl;
		cout << it->first << ":" << it->second << endl;
		++it;
	} 
	cout << endl;
	
	// insert插⼊pair对象的4种⽅式,对⽐之下,最后⼀种最⽅便
	pair<string, string> kv1("first", "第⼀个");
	dict.insert(kv1);
	dict.insert(pair<string, string>("second", "第⼆个"));
	dict.insert(make_pair("sort", "排序"));
	dict.insert({ "auto", "⾃动的" });
	
	// "left"已经存在,插⼊失败
	dict.insert({ "left", "左边,剩余" });
	
	// 范围for遍历
	for (const auto& e : dict)
	{
		cout << e.first << ":" << e.second << endl;
	} 
	cout << endl;
	
	string str;
	while (cin >> str)
	{
		auto ret = dict.find(str);
		if (ret != dict.end())
		{
			cout << "->" << ret->second << endl;
		} 
		else
		{
			cout << "⽆此单词,请重新输⼊" << endl;
		}
	} 
	// erase等接⼝跟set完全类似,这⾥就不演⽰讲解了
	return 0;
}

8、map的迭代器和[]功能样例

#include<iostream>
#include<map>
#include<string>
using namespace std;
int main()
{
	// 利⽤find和iterator修改功能,统计⽔果出现的次数
	string arr[] = { "苹果", "西⽠", "苹果", "西⽠", "苹果", "苹果", "西⽠",
	"苹果", "⾹蕉", "苹果", "⾹蕉" };
	map<string, int> countMap;
	for (const auto& str : arr)
	{
		// 先查找⽔果在不在map中
		// 1、不在,说明⽔果第⼀次出现,则插⼊{⽔果, 1}
		// 2、在,则查找到的节点中⽔果对应的次数++
		auto ret = countMap.find(str);
		if (ret == countMap.end())
		{
			countMap.insert({ str, 1 });
		} 
		else
		{
			ret->second++;
		}
	} 
	for (const auto& e : countMap)
	{
		cout << e.first << ":" << e.second << endl;
	}
	cout << endl;
	return 0;
} 
///
#include<iostream>
#include<map>
#include<string>
using namespace std;
int main()
{
	// 利⽤[]插⼊+修改功能,巧妙实现统计⽔果出现的次数
	string arr[] = { "苹果", "西⽠", "苹果", "西⽠", "苹果", "苹果", "西⽠",
	"苹果", "⾹蕉", "苹果", "⾹蕉" };
	map<string, int> countMap;
	for (const auto& str : arr)
	{
		// []先查找⽔果在不在map中
		// 1、不在,说明⽔果第⼀次出现,则插⼊{⽔果, 0},同时返回次数的引⽤,++⼀下就变成1次了
		// 2、在,则返回⽔果对应的次数++
		countMap[str]++;
	} 
	for (const auto& e : countMap)
	{
		cout << e.first << ":" << e.second << endl;
	} 
	cout << endl;
	return 0;
}
#include<iostream>
#include<map>
#include<string>
using namespace std;
int main()
{
	map<string, string> dict;
	dict.insert(make_pair("sort", "排序"));
	// key不存在->插⼊ {"insert", string()}
	dict["insert"];
	
	// 插⼊+修改
	dict["left"] = "左边";
	
	// 修改
	dict["left"] = "左边、剩余";
	
	// key存在->查找
	cout << dict["left"] << endl;
	return 0;
}

9、multimap和map的差异

  1. multimap和map的使用基本完全类似,主要区别点在于multimap支持关键值key冗余,那么insert/find/count/erase都围绕着支持关键值key冗余有所差异,这里跟set和multiset完全一样,比如find时,有多个key,返回中序第一个。
  2. 其次就是multimap不支持[],因为支持key冗余,[]就只能支持插入了,不能支持修改。

http://www.kler.cn/news/359431.html

相关文章:

  • 【LLM】大模型工具调用之AllTools模型
  • 初识git · 基本操作
  • 【云原生】Kubernetes (K8s)
  • 【CVPR 2024】最新图像增强算法 | 图像去雨 | Deraining
  • 详解Java之异常
  • linux下建立软链接
  • windows 上验证请求接口是否有延迟
  • LeetCode Hot100 | Day6 | 从前序和中序数组构建二叉树
  • 使用短效IP池的优势是什么?
  • Axure显示与隐藏——元件动作一
  • 面对AI算力需求激增,如何守护数据中心机房安全?
  • Linux系统:tac命令
  • 红日靶机(五)笔记
  • ES2017 新特性 (Async和await)
  • 【从零开始的LeetCode-算法】3099. 哈沙德数
  • Lua环境安装
  • 人工智能:塑造未来生活与工作的力量
  • 链表的基本操作(FreeRTOS基础)
  • SpringBoot智能推荐:健康生活新选择
  • 大话哈希冲突