当前位置: 首页 > article >正文

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

三十多个开源数据集 | 故障诊断再也不用担心数据集了!

Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行变分模态分解VMD的介绍与数据预处理,最后通过Python实现VMD-CNN-BiGRU-Attenion的时空特征融合多头注意力机制对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_凯斯西储大学轴承数据集-CSDN博客

模型整体结构

  1. VMD分解:

  • 输入:轴承振动信号

  • 操作:通过VMD技术将原始信号分解成多个本征模态函数(IMF)

  • 输出:每个IMF表示不同频率范围内的振动成分2.CNN特征提取:

  • 输入:VMD分解得到的IMFs

  • 操作:对每个IMF进行卷积和池化操作,提取局部特征

  • 输出:卷积池化后的特征表示,用于捕获不同频率下的振动特征

  1. BiGRU-Attention时序特征提取:

  • 输入:CNN提取的特征序列

  • 操作:双向GRU网络学习序列信息,Attention机制关注重要的时序特征

  • 输出:经BiGRU-Attention处理后的时序特征表示,具有更好的时序建模能力

  1. 特征增强:

  • 输入:BiGRU-Attention提取的时序特征

  • 操作:可以采用归一化、降维、特征融合等方法对特征进行增强,提高模型性能和泛化能力

 1 变分模态分解VMD的Python示例

第一步,Python 中 VMD包的下载安装:

# 下载
pip install vmdpy

# 导入
from vmdpy import VMD

第二步,导入相关包进行分解

​​​​​​

import numpy as np
import matplotlib.pyplot as plt
from vmdpy import VMD

# -----测试信号及其参数--start-------------
t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 20 * t)
T = len(signal)
fs = 1/T
t = np.arange(1,T+1)/T

# alpha 惩罚系数;带宽限制经验取值为抽样点长度1.5-2.0倍.
# 惩罚系数越小,各IMF分量的带宽越大,过大的带宽会使得某些分量包含其他分量言号;
alpha = 2000

#噪声容限,一般取 0, 即允许重构后的信号与原始信号有差别。
tau = 0 
#模态数量  分解模态(IMF)个数
K = 5

#DC 合成信号若无常量,取值为 0;若含常量,则其取值为 1
# DC 若为0则让第一个IMF为直流分量/趋势向量
DC = 0 
#初始化ω值,当初始化为 1 时,均匀分布产生的随机数
# init 指每个IMF的中心频率进行初始化。当初始化为1时,进行均匀初始化。
init = 1 
#控制误差大小常量,决定精度与迭代次数
tol = 1e-7
# -----测试信号及其参数--end----------

# Apply VMD
# 输出U是各个IMF分量,u_hat是各IMF的频谱,omega为各IMF的中心频率
u, u_hat, omega= VMD(signal, alpha, tau, K, DC, init, tol)
#得到中心频率的数值
print(omega[-1])
# Plot the original signal and decomposed modes
plt.figure(figsize=(15,10))
plt.subplot(K+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")
for num in range(K):
    plt.subplot(K+1, 1, num+2)
    plt.plot(t, u[num,:])
    plt.title("IMF "+str(num+1))

plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 故障VMD分解可视化

第一步, 模态选取

根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。

第二步,故障VMD分解可视化

2.3 故障数据的VMD分解预处理

3 基于VMD-CNN-BiGRU-Attenion的轴承故障诊断分类

下面基于VMD分解后的轴承故障数据,先通过CNN进行卷积池化操作提取信号的特征,增加维度,缩短序列长度,然后再送入BiGRU-Attenion层提取时序特征,并对特征进行增强,实现CNN-BiGRU-Attenion的信号分类方法:

3.1 定义VMD-CNN-BiGRU-Attenion分类网络模型

3.2 设置参数,训练模型

50个epoch,准确率将近99%,用VMD-CNN-BiGRU-Attenion网络分类效果显著,CNN-BiGRU-Attenion模型能够充分提取轴承故障信号的空间和时序特征,收敛速度快,性能优越,继续调参可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加CNN层数和隐藏层的维度,微调学习率;

  • 调整BiGRU层数和维度数,调整注意力维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据整理如下:


http://www.kler.cn/news/360302.html

相关文章:

  • Spring Boot技术栈的电影评论网站构建
  • Oracle数据库存储更换,更改文件路径(停机和在线两种方式)
  • 2024年10月21日第三部分
  • 2024第四届”认证杯“数学中国全国大学生数学竞赛参赛通知
  • 彻底解决IDEA SpringBoot项目yml文件没有小树叶,读取配置文件失败问题
  • 【Dv2Admin】软删除的修改与恢复
  • 香港服务器哪种硬盘的运行速度最快?
  • Java后端面试题:MySQL篇
  • 搭子陪玩伴游线上游戏陪玩付费语音陪聊系统源码线下家政源码一体式部署(h5+小程序+app)
  • libtool版本更新
  • 6、ES6
  • 【算法日记】力扣239 滑动窗口最大值
  • 【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
  • golang自封框架
  • go中阶乘实现时递归及迭代方式的比较
  • element-ui table 前端分页
  • Oracle 使用位图索引 Cost降低200倍! 探讨位图索引的利与弊
  • 002_基于django国内运动男装小红书文章数据可视化分析系统的设计与实现2024_qo6cy3i4
  • Linux虚拟化软件与操作系统与SSH客户端
  • 使用 Docker 升级 MySQL 的优化步骤与说明