当前位置: 首页 > article >正文

Python使用asyncio实现异步操作

在这里插入图片描述

Python使用asyncio实现异步操作

  • 1. 基础概念
  • 2. 实现异步 I/O 的步骤
    • 2.1 定义异步函数
    • 2.2 使用 `await` 等待异步操作的完成
    • 2.3 并发执行多个任务
    • 2.4 创建并管理任务
    • 2.5 处理异常
    • 2.6 超时控制
  • 3. 处理复杂的异步 I/O 操作
  • 4. 使用 async/await 的性能优势
  • 5. 总结

在 Python 中,使用 asyncawait 可以非常高效地处理复杂的异步 I/O 操作。它们的主要目的是简化异步编程模型,使代码可读性更好,并且能够在 I/O 操作时不阻塞主线程。下面是如何有效地利用它们来实现复杂异步 I/O 操作的指南:

1. 基础概念

  • async def:定义一个异步函数,这样的函数在调用时不会立即执行,而是返回一个协程对象。
  • await:用于等待一个异步操作(如 I/O 操作)的结果,释放当前函数持有的 CPU 以便其他协程能够执行。
  • asyncio:Python 的标准库提供了强大的异步 I/O 库,包含了事件循环、任务、以及各种异步 I/O 操作的工具。

2. 实现异步 I/O 的步骤

2.1 定义异步函数

使用 async def 定义异步函数,可以在函数内部使用 await 调用异步任务。例如,读取文件、请求网络数据、或者数据库操作等都可以是异步的。

import asyncio

async def fetch_data():
    print("Fetching data...")
    await asyncio.sleep(2)  # 模拟耗时的 I/O 操作,如数据库查询或API请求
    return {"data": "sample"}

2.2 使用 await 等待异步操作的完成

通过 await 等待异步任务的完成,可以避免阻塞程序的执行。

async def main():
    data = await fetch_data()
    print(data)

# 运行事件循环
asyncio.run(main())

2.3 并发执行多个任务

通过 asyncio.gather(),你可以并发地执行多个异步任务,而不是顺序等待每个任务完成。gather 可以同时启动多个协程,并行处理 I/O 操作。

import asyncio


async def task_1():
    await asyncio.sleep(5)
    return "Task 1 finished"


async def task_2():
    await asyncio.sleep(5)
    return "Task 2 finished"


async def main():
    # 计算运行耗时
    start_time = asyncio.get_running_loop().time()
    results = await asyncio.gather(task_1(), task_2())
    print(f"Total time: {asyncio.get_running_loop().time() - start_time}")
    print(results)


asyncio.run(main())

输出结果是并行执行的,虽然 task_1task_2 各需要5秒,但并行总计耗时也是5秒。

2.4 创建并管理任务

asyncio.create_task() 可以将异步函数封装成任务,并且不会阻塞当前执行。它允许同时运行多个任务,并在它们完成后获取结果。

import asyncio


async def task_1():
    await asyncio.sleep(2)
    return "Task 1 complete"


async def task_2():
    await asyncio.sleep(1)
    return "Task 2 complete"


async def main():
    # 计算运行的时间
    start_time = asyncio.get_running_loop().time()
    t1 = asyncio.create_task(task_1())
    t2 = asyncio.create_task(task_2())

    await t1  # 等待任务1完成
    await t2  # 等待任务2完成

    print(asyncio.get_running_loop().time() - start_time)
    print(t1.result())
    print(t2.result())


asyncio.run(main())

输出结果是:

2.5 处理异常

在复杂的异步 I/O 操作中,处理异常非常重要。你可以在 awaitasync 任务中捕获异常。

async def risky_task():
    await asyncio.sleep(1)
    raise ValueError("An error occurred!")

async def main():
    try:
        await risky_task()
    except ValueError as e:
        print(f"Caught exception: {e}")

asyncio.run(main())

输出结果是:

2.6 超时控制

异步 I/O 操作中常常需要处理超时情况。可以通过 asyncio.wait_for() 来实现超时控制。

async def long_task():
    await asyncio.sleep(5)
    return "Task finished"

async def main():
    try:
        result = await asyncio.wait_for(long_task(), timeout=2)
        print(result)
    except asyncio.TimeoutError:
        print("Task timed out")

asyncio.run(main())

输出结果是:

3. 处理复杂的异步 I/O 操作

在更复杂的场景中,可能需要同时处理多种类型的 I/O 操作,比如网络请求、文件读写、数据库查询等。以下是一个例子,它展示了如何通过 asyncio 同时处理不同类型的异步操作。

import asyncio

async def fetch_data_from_api():
    print("Fetching data from API...")
    await asyncio.sleep(3)  # 模拟 API 请求
    return {"api_data": "some api data"}

async def read_from_file():
    print("Reading data from file...")
    await asyncio.sleep(2)  # 模拟文件读操作
    return "file content"

async def write_to_db(data):
    print(f"Writing {data} to database...")
    await asyncio.sleep(1)  # 模拟数据库写入操作
    return "DB write success"

async def main():
    # 并发执行 I/O 操作
    api_task = asyncio.create_task(fetch_data_from_api())
    file_task = asyncio.create_task(read_from_file())

    # 等待所有 I/O 操作完成
    api_data, file_content = await asyncio.gather(api_task, file_task)

    # 处理 I/O 操作的结果
    print(f"API Data: {api_data}")
    print(f"File Content: {file_content}")

    # 写入数据库
    db_result = await write_to_db(api_data)
    print(db_result)

asyncio.run(main())

输出结果是:

4. 使用 async/await 的性能优势

  • 避免阻塞:传统的同步 I/O 操作(如文件读取、网络请求)会阻塞线程,而 async/await 允许在等待 I/O 操作时执行其他任务,极大提高了并发处理的能力。
  • 降低线程开销:相比多线程,多协程(基于 async 的方式)能够减少线程上下文切换的开销,在高并发场景下更加高效。

5. 总结

利用 asyncawait 处理异步 I/O 操作时,可以有效地管理任务的并发执行,并通过 asyncio 提供的工具(如 gathercreate_task)进一步简化复杂的异步操作。同时,超时控制、异常处理等功能也很容易集成到异步 I/O 操作中。


http://www.kler.cn/news/365708.html

相关文章:

  • SAP_SD模块-销售订单创建价格扩大10倍问题分析及后续订单价格批量更新问题处理
  • C++游戏开发教程:从入门到进阶
  • vue写个表格,让它滚动起来,没有用datav,有的时候结合会出错,一种简单的方法,直接用animation
  • 报表系统-连接数据库操作
  • 一文掌握Kubernates核心组件,构建智能容器管理集群
  • 异地组网最简单的方法
  • 深度学习系列——RNN/LSTM/GRU,seq2seq/attention机制
  • AI学习指南自然语言处理篇-Transformer模型的编码器-解码器结构
  • OpenCV通道拆分:深入理解图像处理
  • Swift 是一种由苹果公司开发的强大而直观的编程语言,主要用于开发 iOS、macOS、watchOS 和 tvOS 等苹果平台的应用程序。
  • Spring Boot:植物健康监测的智能解决方案
  • Spring Boot框架下的Java多线程
  • 【继承】讲解
  • Halcon图像颜色通道拆分合并与四则运算
  • Matlab中实现智能优化算法的平均排序图
  • Redis对象共享池,性能优化小细节
  • 设计模式(七)桥接模式详解
  • Linux之实战命令53:mtr应用实例(八十七)
  • 将获取的数据存储到Excel文件中
  • 动态规划之子数组系列(下)
  • 分行或者分列计算数组中各元素的累积numpy.cumproduct()
  • vue中标签的ref和id的用法和区别优缺点
  • UE5蓝图中忽略触发区域进行碰撞
  • 【Java】输入十个整数,从小到大输出
  • ATom:2016-2018 年来自 CAPS 仪器的云和粗气溶胶测量数据
  • 【C++篇】栈的层叠与队列的流动:在 STL 的韵律中探寻数据结构的优雅之舞