当前位置: 首页 > article >正文

近似线性可分支持向量机的原理推导

近似线性可分的意思是训练集中大部分实例点是线性可分的,只是一些特殊实例点的存在使得这种数据集不适用于直接使用线性可分支持向量机进行处理,但也没有到完全线性不可分的程度。所以近似线性可分支持向量机问题的关键就在于这些少数的特殊点。

相较于线性可分情况下直接的硬间隔最大化策略,近似线性可分问题需要采取一种称为“软间隔最大化”的策略来处理。少数特殊点不满足函数间隔大于1的约束条件,近似线性可分支持向量机的解决方案是对每个这样的特殊实例点引入一个松弛变量 ξ i ⩾ 0 \xi_i \geqslant 0 ξi0 ,使得函数间隔加上松弛变量后大于等于1,约束条件就变为:
y i ( w ⋅ x i + b ) + ξ i ⩾ 1 (9-37) y_i(w \cdot x_i + b) + \xi_i \geqslant 1 \tag{9-37} yi(wxi+b)+ξi1(9-37)

对应的目标函数也变为:
1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i (9-38) \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i \tag{9-38} 21∣∣w2+Ci=1Nξi(9-38)

其中 C C C 为惩罚系数,表示对误分类点的惩罚力度。

跟线性可分支持向量机一样,近似线性可分支持向量机可形式化为一个凸二次规划问题:
min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i  s.t.  y i ( w ⋅ x i + b ) ≥ 1 − ξ i , i = 1 , 2 , ⋯   , N ξ i ≥ 0 , i = 1 , 2 , ⋯   , N (9-39) \begin{aligned} & \min_{w,b,\xi} \quad \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i \\ & \text { s.t. } \quad y_i (w \cdot x_i + b) \geq 1 - \xi_i, \quad i = 1, 2, \cdots, N \\ & \quad \xi_i \geq 0, \quad i = 1, 2, \cdots, N \tag{9-39} \end{aligned} w,b,ξmin21w2+Ci=1Nξi s.t. yi(wxi+b)1ξi,i=1,2,,Nξi0,i=1,2,,N(9-39)

类似于 9.2.1 节的线性可分离支持向量机的凸二次规划问题,我们同样将其转化为对偶问题进行求解。式(9-39)的对偶问题为:
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i  s.t.  ∑ i = 1 N α i y i = 0 0 ≤ α i ≤ C , i = 1 , 2 , ⋯   , N (9-40) \begin{aligned} & \min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) - \sum_{i=1}^{N} \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & \quad 0 \leq \alpha_i \leq C, \quad i = 1, 2, \cdots, N \tag{9-40} \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=00αiC,i=1,2,,N(9-40)

式(9-39)的拉格朗日函数为:
L ( w , b , ξ , α , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i − ∑ i = 1 N α i ( y i ( w ⋅ x i + b ) − 1 + ξ i ) − ∑ i = 1 N μ i ξ i (9-41) L(w, b, \xi, \alpha, \mu) = \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{N} \mu_i \xi_i \tag{9-41} L(w,b,ξ,α,μ)=21w2+Ci=1Nξii=1Nαi(yi(wxi+b)1+ξi)i=1Nμiξi(9-41)

原始问题为极小极大化问题,则对偶问题为极大极小化问题。同样先对 L ( w , b , ξ , α , μ ) L(w, b, \xi, \alpha, \mu) L(w,b,ξ,α,μ) w , b , ξ w, b, \xi w,b,ξ 的极小,再对其求 α \alpha α 的极大。首先求 L ( w , b , ξ , α , μ ) L(w, b, \xi, \alpha, \mu) L(w,b,ξ,α,μ) 关于 w , b , ξ w, b, \xi w,b,ξ 的偏导,如下:
∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 (9-42) \frac{\partial L}{\partial w} = w - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \tag{9-42} wL=wi=1Nαiyixi=0(9-42)

∂ L ∂ b = − ∑ i = 1 N α i y i = 0 (9-43) \frac{\partial L}{\partial b} = - \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{9-43} bL=i=1Nαiyi=0(9-43)

∂ L ∂ ξ i = C − α i − μ i = 0 (9-44) \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0 \tag{9-44} ξiL=Cαiμi=0(9-44)

可解得:
w = ∑ i = 1 N α i y i x i (9-45) w = \sum_{i=1}^{N} \alpha_i y_i x_i \tag{9-45} w=i=1Nαiyixi(9-45)

∑ i = 1 N α i y i = 0 (9-46) \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{9-46} i=1Nαiyi=0(9-46)

C − α i − μ i = 0 (9-47) C - \alpha_i - \mu_i = 0 \tag{9-47} Cαiμi=0(9-47)

将式(9-45)~式(9-47)代入式(9-41),有:

min ⁡ w , b , ξ L ( w , b , ξ , α , μ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i (9-48) \min_{w,b,\xi} \quad L(w, b, \xi, \alpha, \mu) = - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^{N} \alpha_i \tag{9-48} w,b,ξminL(w,b,ξ,α,μ)=21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi(9-48)

然后对 min ⁡ w , b , ξ \min_{w,b,\xi} minw,b,ξ L ( w , b , ξ , α , μ ) L(w,b,\xi,\alpha,\mu) L(w,b,ξ,α,μ) α \alpha α 的极大,可得对偶问题为:

max ⁡ α L ( w , b , ξ , α , μ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i s . t . ∑ i = 1 N α i y i = 0 C − α i − μ i = 0 α i ≥ 0 μ i ≥ 0 , i = 1 , 2 , … , N (9-49) \begin{aligned} & \max_\alpha L(w,b,\xi,\alpha,\mu) = -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N \alpha_i \\ & s.t. \quad \sum_{i=1}^N \alpha_i y_i = 0 \\ & \quad C - \alpha_i - \mu_i = 0 \\ & \quad \alpha_i \geq 0 \\ & \quad \mu_i \geq 0, \quad i = 1, 2, \dots, N \tag{9-49} \end{aligned} αmaxL(w,b,ξ,α,μ)=21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαis.t.i=1Nαiyi=0Cαiμi=0αi0μi0,i=1,2,,N(9-49)

将式(9-49)的第2~4个约束条件式进行变换,消除变量 μ i \mu_i μi 后可简化约束条件为:
0 ≤ α i ≤ C (9-50) 0 \leq \alpha_i \leq C \tag{9-50} 0αiC(9-50)

联合式(9-48)和式(9-49),并将极大化问题转化为极小化问题,即式(9-40)的对偶问题。跟线性可分支持向量机求解方法一样,近似线性可分问题也是通过求解对偶问题而得到原始问题的解,进而确定线性分隔超平面和分类决策函数。

假设 α ∗ = ( α 1 ∗ , α 2 ∗ , … , α N ∗ ) T \alpha^* = (\alpha_1^*, \alpha_2^*, \dots, \alpha_N^*)^T α=(α1,α2,,αN)T 是对偶最优化问题式(9-40)的解,根据拉格朗日对偶理论相关推论,式(9-40)满足KKT(Karush-Kuhn-Tucker)条件,有:
∂ L ∂ w = w ∗ − ∑ i = 1 N α i ∗ y i x i = 0 (9-51) \frac{\partial L}{\partial w} = w^* - \sum_{i=1}^N \alpha_i^* y_i x_i = 0 \tag{9-51} wL=wi=1Nαiyixi=0(9-51)

∂ L ∂ b = − ∑ i = 1 N α i ∗ y i = 0 (9-52) \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i^* y_i = 0 \tag{9-52} bL=i=1Nαiyi=0(9-52)

∂ L ∂ ξ = C − α ∗ − μ ∗ = 0 (9-53) \frac{\partial L}{\partial \xi} = C - \alpha^* - \mu^* = 0 \tag{9-53} ξL=Cαμ=0(9-53)

α i ∗ ( y i ( w ∗ ⋅ x i + b ∗ ) − 1 + ξ i ∗ ) = 0 (9-54) \alpha_i^*(y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^*) = 0 \tag{9-54} αi(yi(wxi+b)1+ξi)=0(9-54)

μ i ∗ ξ i ∗ = 0 (9-55) \mu_i^* \xi_i^* = 0 \tag{9-55} μiξi=0(9-55)

y i ( w ∗ ⋅ x i + b ∗ ) − 1 + ξ i ∗ ≥ 0 (9-56) y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^* \geq 0 \tag{9-56} yi(wxi+b)1+ξi0(9-56)

ξ i ∗ ≥ 0 (9-57) \xi_i^* \geq 0 \tag{9-57} ξi0(9-57)

α i ∗ ≥ 0 (9-58) \alpha_i^* \geq 0 \tag{9-58} αi0(9-58)

μ i ∗ ≥ 0 , i = 1 , 2 , … , N (9-59) \mu_i^* \geq 0, \quad i = 1, 2, \dots, N \tag{9-59} μi0,i=1,2,,N(9-59)

可解得:
w ∗ = ∑ i = 1 N α i ∗ y i x i (9-60) w^* = \sum_{i=1}^N \alpha_i^* y_i x_i \tag{9-60} w=i=1Nαiyixi(9-60)

b ∗ = y j − ∑ i = 1 N α i ∗ y i ( x i ⋅ x j ) (9-61) b^* = y_j - \sum_{i=1}^N \alpha_i^* y_i (x_i \cdot x_j) \tag{9-61} b=yji=1Nαiyi(xixj)(9-61)

以上就是近似线性可分支持向量机的基本推导过程。从过程来看,近似线性可分问题求解推导与线性可分问题的求解推导非常类似。


以下是部分公式更加详细的解释:
公式 9-37
公式 9-38
公式 9-40
公式 9-41
公式 9-50
公式 9-51 ~ 9-59


http://www.kler.cn/news/366326.html

相关文章:

  • ReactOS系统中平衡二叉树按从左到右的顺序找到下一个结点
  • Python实现基于WebSocket的stomp协议调试助手工具
  • 使用xml发送国际短信(smspro)【吉尔吉斯斯坦】
  • 听见文本的魅力:AI 与未来的语音交互
  • 基于LSTM-Transformer混合模型实现股票价格多变量时序预测(PyTorch版)
  • 使用AutoDL训练YOLO等计算机视觉网络模型(AutoDL+Xftp+VS Code),附详细操作步骤
  • adb常见指令以及问题解决
  • 认识CSS语法
  • YOLOv8_ ByteTrack目标跟踪、模型部署
  • 青少年编程与数学 02-002 Sql Server 数据库应用 06课题、数据库操作
  • 学习笔记——动态路由——OSPF(距离矢量协议)OSPF路由类型
  • 《Windows PE》7.4 资源表应用
  • ES 模块的用法
  • 高效、安全、无忧——P2Link重塑远程访问体验
  • 推送消息存储策略
  • django(3)jinja2模版的使用
  • AJAX—— jQuery 发送 AJAX 请求
  • Linux笔记---Makefile的简单用法
  • 【python】--python进阶学习
  • 新书速览|Spring+Spring MVC+MyBatis从零开始学(视频教学版)(第3版)
  • WORFBENCH:一个创新的评估基准,目的是全面测试大型语言模型在生成复杂工作流 方面的性能。
  • openEuler 服务器系统优化技巧
  • Java应用程序的测试覆盖率之设计与实现(三)-- jacoco cli 客户端
  • wxWidgets开发最佳IDE选哪个?界面设计器选wxSmith还是wxFormBuilder,wxCrafter?
  • Selenium处理验证码
  • 什么是MySQL索引?为什么要有索引?